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Abstract—We propose a video-based transfer learning
approach for predicting problem outcomes of students working
with an intelligent tutoring system (ITS) by analyzing their faces
and gestures. The ability to predict such outcomes enables tutor-
ing systems to adjust interventions and ultimately yield improved
student learning. We collected and released a labeled dataset of
2,749 problem-solving interaction samples of 54 students working
with an intelligent online math tutor. Our transfer-learning chal-
lenge was then to design a representation in the source domain
of images obtained from the Internet for facial expression analy-
sis, and transfer this learned representation for human behavior
prediction in the domain of webcam videos of students in a
classroom environment. We developed a novel facial affect repre-
sentation and a user-personalized training scheme that unlocks
the potential of this representation. We designed several vari-
ants of a recurrent neural network that models the temporal
structure of video sequences. Our final model, named ATL-BP
for Affect Transfer Learning for Behavior Prediction, achieves a
relative increase in the mean F-score of 50% over the state-of-the-
art method on this new dataset. We also propose an additional
set of annotations to predict students’ engagement while solving
a specific problem, and present models that can predict such
engagement.

Index Terms—Transfer learning, behavior prediction, engage-
ment prediction, intelligent tutoring system, video classification.
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I. INTRODUCTION

RESEARCH on developing intelligent tutoring systems
(ITS) is a promising avenue for improving learning and

education [1], [2], [3]. Previous work has shown that real-time
signals from students can be used to improve their learning [4],
[5], [6]. Predicting whether students are having trouble with
problems can allow an ITS to provide interventions, such as
providing hints or encouragement, which could help the stu-
dents understand or solve the problem, thus improving learning
outcomes.

MathSpring [1] is a popular online browser-based ITS that
uses multimedia to encourage and support students as they solve
math problems. Figure 2 shows the student interactive interface
of MathSpring. Using the MathSpring ITS, a dataset named
MathSpringSP [7] was collected, which includes 1,596 seg-
mented videos of study sessions of students interacting with
the ITS. Each problem tackled by a student has an associ-
ated outcome label automatically annotated by the ITS. Some
example labels are skipped, solved on first try, solved with hint,
among others. In this work we address the problem of predicting
the outcome label from a video feed of the student while they
are solving problems. As facial expressions and gestures are
important cues for inferring problem outcomes, we propose
to learn an affect representation using in-the-wild images for
facial expression recognition, and transfer it to the task of
predicting learning outcomes of students. Having a model that
can successfully predict outcomes while a student completes a
problem can help the ITS provide interventions such as hints
or encouragement when the student is having difficulties.

Facial and gesture analysis are valuable tools for predicting
emotions, but the question of how to use them for predicting
student performance with an ITS remains challenging since
cues can be very subtle or ambiguous. A smile, for exam-
ple, does not necessarily mean that the student is happily
solving an exercise. Instead, it could indicate a student’s
embarrassment for not knowing the answer to a question.
Moreover, in our experience, trying to obtain valid ground
truth labels of the student videos from human annotators is
a futile experimental task because humans have a very low
accuracy rate when predicting problem outcomes from video.
Just like automated facial analysis tools, human annotators
struggle with interpreting the ambiguity in and limited amount
of information given by student gestures.
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Fig. 1. Our proposed Affect Transfer Learning for Behavior Prediction
(ATL-BP) model for predicting the behavior of students working with an intel-
ligent tutoring system. For the source domain task of affect recognition (left),
an affect network is trained to extract an affect representation from images
of faces, which is used for classifying eight expressions. We employ this
trained affect network for solving the target-domain problem of student out-
come prediction. The target-domain ATL-BP model (right) consists of three
components, the trained affect network, a facial analysis network, and an
LSTM.

Fig. 2. MathSpring Interface. A sample MathSpring problem is presented
in the figure. Problems are either multiple choice, short answer, or check-all-
that-apply. When students are solving problems, hints, worked-out examples,
tutorial videos, and formulas related to the problem are available from the
corresponding buttons on the left. On the right, a learning companion (Jane)
encourages and supports students when they make mistakes.

Prior research in transfer learning for facial analysis tasks
mostly focuses on transfer learning for the same task in
order to bridge domain gaps such as personalization of a
prediction system to specific individuals [8], [9], [10], [11],
[12], [13], improving results on a benchmark by fine-tuning
neural networks that are pre-trained on external datasets for
a similar prediction task [14], or improving results by pre-
training on a related facial analysis task [15], [16]. In contrast,
our work tackles the more challenging transfer learning across
domains and tasks, which is a form of transductive transfer
learning [17]. Specifically, we tackle the problem of learning
a representation in the source domain of in-the-wild pictures
for the task of facial expression analysis and transferring this
learned representation to the task of human behavior prediction

in the domain of webcam videos in a controlled environment
(Figure 1). While prior work has explored transfer learning
from facial analysis to behavior analysis, for example, using
VGG-Face facial recognition embeddings to predict driver dis-
traction [18], our work is, to the best of our knowledge, the
first to propose leveraging an affect representation, learned
using a deep neural network, for a behavior prediction task.
Our learned affect representation is general and can be used
not only for predicting problem outcomes on an ITS, but
in any human behavior prediction problem where affect and
expression are important cues.

The largest obstacle in training an end-to-end deep learn-
ing model for behavior analysis problems is the fact that data
are relatively scarce, which increases the risk of overfitting.
As a first step to alleviating the data problem, we present
MathSpringSP+, an extended version of the MathSpringSP
dataset, which is roughly double the size of the original
dataset. Next, we propose a novel facial affect representation
for behavior prediction problems that is learned from a large
affect classification dataset. We show that, by incorporating
this affect embedding, we can obtain improvements com-
pared to more traditional deep face embeddings such as the
VGG-Face facial recognition embedding [19]. We developed a
two-layer Long Short Term Memory (LSTM) model [20] that
takes into account the temporal structure of the problem and
successfully leverages our affect embedding. We show that,
by conducting user-personalized training where a small por-
tion of a student’s initial captured data is used to fine-tune
the model, our method outperforms the previous state-of-
the-art method [7] by 50%. We present a video dataset of
problem-solving interactions of children and show that fine-
tuning the ATL-BP affect network using children face images
further improves the performance. Finally, we augment the
set of annotations for the dataset to include the perceived
engagement (‘Looking at screen,’ ‘Looking at paper,’ and
‘Wandering’) of the students while working on MathSpring.
In this paper, we expand on our previous work [21] and
summarize the comprehensive set of contributions as follows:

• We present MathSpringSP+: a large labeled dataset of
student interactions with an intelligent online math tutor
consisting of 68 sessions, where 54 students solved
2,749 problems in total. We make this dataset publicly
available.1

• We present a novel affect transfer learning representation
that can be used for behavior prediction tasks. We are the
first to model the temporal structure of video sequences of
students solving math problems using a recurrent neural
network architecture.

• Our proposed Affect Transfer Learning for Behavior
Prediction (ATL-BP) model outperforms the previous
state-of-the-art method by 50%.

• We show that finetuning the ATL-BP affect network using
children face images further improves the performance
on MathSpring Children Dataset, a dataset of children
problem-solving interactions collected in the same man-
ner as MathSpringSP+.

1https://www.cs.bu.edu/faculty/betke/research/learning/
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• We collected additional frame-wise labels of student
engagement and trained models to demonstrate the possi-
bility of successfully predicting engagement. This would
enable future exploration of how affect, engagement, and
learning outcomes correlate. We also make this additional
set of labels publicly available.1

II. RELATED WORK

Intelligent Tutoring Systems: ITSs have been evaluated and
shown to produce learning gains [22], [23], [24], [25], [26],
[27]. One meta-analysis shows test score improvements from
the 50th to 75th percentile [28]. Some ITSs have been shown
to match the success of one-on-one human tutoring and stu-
dents using these tutors outperform students from conventional
classes in 92% of the controlled evaluations and perform
twice as high as for students using typical (non-intelligent)
systems [28], [29], [30].

Prior research has analyzed user affect, emotions and
expressions from interactions with educational games [31] or
intelligent tutoring systems [22], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42]. In certain cases the predicted
affect information is used to improve learning. For example,
Strain and D’Mello [43] have studied the role of emotion in
ITS engagement, task persistence, and learning gain. Gaze
prediction has also been used in an effort to respond to stu-
dents’ boredom and to perform interventions [22]. Further,
relationships between visual facial Action Unit (AU) factors
and self-reported traits such as academic effort, study habits,
and interest in the subject have been studied [39].

In contrast to this body of work, our work focuses on using
predicted deep affect embeddings that are learned from a large
facial affect dataset to improve behavior prediction in an ITS.
Behavior prediction can be useful in improving learning by
tailoring the interventions of the ITS to the predicted actions
of the student. To the best of our knowledge, our work is the
first to use an affect embedding for behavior prediction in an
ITS.

Interventions in an Online Tutor: Prior research has exam-
ined the impact of several interventions in ITS to improve stu-
dent outcome and affect, specifically, affective messages deliv-
ered by avatars and empathetic messages that responded to
students’ recent emotions [3]. Interventions in the MathSpring
ITS led to improved grades in state standardized exams [44]
as well as influenced students’ perceptions of themselves as
learners [45]. Empathetic characters that provide interventions
generate superior results both to improve student interactions
with the system, address negative student emotions, and in
the overall learning experience [46]. Predicting outcomes of
problems for students is a valuable source of information
for planning and executing ITS interventions for improving
learning [47], [48]. For example the ITS could provide hints
when the system predicts that the student will not be able to
successfully complete the problem.

Predicting Exercise Outcome: Joshi et al. [7] presented
a first attempt at tackling the problem of exercise outcome
prediction. They did not explore deep learning representations
but used traditional facial analysis features such as head pose,

Fig. 3. Data capture setup for the MathSpringSP+ dataset. The student
completes intelligent tutor problems on a laptop while being recorded with
the laptop camera. The student may use a pad and pen to solve the problems.
If the student writes with the right hand, as here, the pad is located to the
right of the laptop, and the Go-Pro camera is also placed to the right so that
the students’ upper body and face can be recorded during the completion of
the problems.

gaze and facial action units (AUs). They also did not attempt to
model the temporal component of the videos, which is a rich
source of information, and instead opted to summarize fea-
tures from a video into one single feature vector. The method
by Joshi et al. [7] can be considered the previous state of the
art in student outcome prediction, and, thus, our experimental
results include a performance comparison between this method
and our models.

III. DATASETS

In order to build an ITS capable of understanding stu-
dent behavior and producing interventions, it is critical to
build tailored datasets that allow development of behavior
understanding techniques. To this end, we present datasets of
students from different age groups interacting with the online
tutor MathSpring [1]. Specifically, MathSpringSP+ Dataset
includes videos of college students, and MathSpring Children
Dataset comprises videos of sixth grade students. We make
MathSpringSP+ Dataset publicly available.

The datasets were collected with informed consent by par-
ticipants. Our institution’s Internal Review Board (IRB) has
approved the human subject research and the data collection
process.

A. MathSpringSP+ Dataset

In this work, we expand the MathSpringSP dataset described
by Joshi et al. [7], following the same data collection protocol.
The extended dataset MathSpringSP+ is roughly double the
size of the original MathSpringSP dataset.

Data Collection: MathSpringSP+ consists of Webcam and
GoPro videos that are recorded while college students solve
math problems using the online tutor MathSpring [1] on a
laptop. The webcam is positioned on the laptop and films
the student at a frontal angle. Figure 3 illustrates our data
capturing setup (for right-handed students). For right-handed
students, the GoPro video cameras are placed on the right
above the students’ pad of paper. When students look down
to use their paper and pencil to work solving problems, the
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Fig. 4. Example face-cropped images from the MathSpringSP+ dataset showing the evolution of student expressions. In particular we notice changes in
head pose, hand gestures, face occlusion and facial gestures throughout the videos. Expressions in videos can be very subtle, as well as ambiguous, making
the prediction problem challenging.

GoPros capture the view of the students’ faces. For left-handed
students, the GoPro cameras are placed on the left. The GoPro
and webcam cameras are synchronized. At the beginning of
each session, a few seconds of the desktop clock are recorded
by the GoPro camera and then a movie clapper is clapped in
front of the webcam camera allowing both the cameras to hear
and record the clap. Before students start to solve math prob-
lems, they are asked to finish an oral expressiveness baseline
survey and a pre-survey. The baseline expressiveness survey
contains questions such as ‘What is your least favorite school
subject? Why do you dislike it so much?’. Students read the
questions out loud and then they click submit to move through
questions. For the pre-survey, students need to give the Likert
rating (‘This is VERY MUCH/MOSTLY/SOMEWHAT/NOT
MUCH/NOT LIKE me’) for each question. An example of a
pre-survey question is ‘I have overcome setbacks (obstacles
on the way) to conquer an important challenge.’

Students work on solving math problems for 30–40 min-
utes or approximately 50 problems. The number of problems
solved is variable between sessions depending on the rate at
which each student solves problems. We divide each student’s
video session into shorter video segments, where each seg-
ment is associated with an individual math problem. Each
math problem video clip has an associated problem outcome
y, recorded in the log files of the ITS [7]. This problem
outcome is automatically labeled by the software using a
rule-based algorithm that chooses from the following seven
possible student outcomes:

• ATT (attempted): Student did not see any hints and solved
the problem after one incorrect attempt

• GIVEUP: Student tried to answer the problem or asked
for a hint but ultimately skipped the problem

• GUESS: Student did not see hints, but solved the problem
after more than one incorrect attempts

• NOTR (not read): Student performed some action, but the
first action was too fast for the student to have read the
problem

• SHINT (solved with hint): Student eventually submitted
the correct answer after seeing one or more hints

• SKIP: Student skipped the problem without asking for a
hint or attempting to answer the problem

• SOF (solved on the first attempt): Student answered
correctly on the first attempt, without seeing any hints

Dataset Details: Examples of the variation in student facial
expression throughout the process of answering problems in
the math tutor are shown in Figure 4. We note that expres-
sions can be very subtle. Expressions can also be ambiguous:
a frown can mean that the student is very focused and will
solve the problem correctly or that they are having difficulties
with the problem. Expression intensities and variance depend
on the individual, and it is challenging to generalize to dif-
ferent identities. Finally, our method has to deal with hand
gestures, face occlusions and extreme pose changes, some of
which are shown in Figure 4. A total of 24 students partic-
ipated in the extended study, compared to 30 in the original
study. We note that the dataset only includes individuals who
have provided written consent that their data may be used
publicly for research purposes. Several students participated in
multiple sessions. Each session lasted approximately one hour.
In total, 30 student sessions were recorded, which yielded
1,153 problem samples. Thus, the extended MathSpringSP+
dataset contains videos of a total of 54 unique students, 68 stu-
dent sessions and 2,749 problem samples. This amount of
data almost doubles the original MathSpringSP dataset, which
contains 38 student sessions and 1,596 problem samples. A
detailed breakdown of the relative sizes of MathSpringSP and
MathSpringSP+ is shown in Table I.

B. MathSpring Children Dataset

Besides expanding the previous MathSpringSP dataset, we
further collected a dataset of sixth grade students who used
MathSpring in Latin America following the same data collec-
tion protocol. MathSpring Children Dataset presents videos of
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TABLE I
SIZE COMPARISON OF OUR EXTENDED MATHSPRINGSP+ DATASET

COMPARED TO MATHSPRINGSP

Fig. 5. Sixth grade students are working on MathSpring in their class-
room. The figure shows the classroom layout and data capture setup of our
MathSpring Children Dataset.

students from a younger age group, allowing us to explore the
generalizability of our behavior prediction models to different
age groups.

Fifty-one sixth grade students and their teachers used a
version of MathSpring translated into Spanish for 2 months
in their daily classes (Figure 5). With their corresponding
parental consent, students who used MathSpring in three dif-
ferent schools in Argentina were videorecorded. This dataset
contains 58 sessions, over 35 hours of facial expressions
of 11-year-old children using MathSpring to practice math
problem solving as part of their regular mathematics classes
in either Spanish-speaking or bilingual schools. Following
the same data processing and annotation steps, 968 recorded
problem-solving interaction samples as well as the seven
problem outcome annotations have been collected.

IV. METHOD

A. Problem Formulation

The dataset consists of labeled video pairs (X, y), where
the video X is a time series of RGB frames X = {Xt | t =
1, . . . ,T} of a student solving a problem, and the scalar label
y indicates the outcome class for that problem. The task is a
7-label classification problem, i.e., y ∈ {1, . . . ,C}, for C = 7.

B. The Proposed ATL-BP Framework

The proposed ATL-BP model consists of three main com-
ponents (Figure 1), the affect network trained for the source
domain problem of affect recognition, a facial analysis
network, and an LSTM. We also study variants of our model
by either removing the affect network or replacing it with a
face recognition network.

1) Source Domain Learning: Our challenge was to deter-
mine how to leverage state-of-the-art affect recognition tech-
niques to compute an output label y from the input video X.
Affect recognition models provide affect estimates from

images of faces that typically show strong emotions, e.g., the
fear expressed in the women’s face on the left in Figure 1. We
used a ResNet-50 network [49] and the AffectNet dataset [50],
which contains more than one million facial images collected
“in the wild” from the Internet, to solve the source domain
problem of predicting eight emotions (neutral, happiness, sad-
ness, surprise, fear, disgust, anger, and contempt), plus the
two classes (uncertain, and non-face). We employ this trained
affect network to solve the target-domain problem of student
outcome prediction.

2) Feature Extraction: First, from the last layer of the
trained affect network, ATL-BP extracts a fixed-size embed-
ding of size 8,192, computed for each frame Xt, and com-
presses it into a lower-dimensional vector ρ(Xt) by learning
the weights for a fully-connected neural network layer ca

(Figure 1, magenta). The intuition behind having this learn-
able linear layer that compresses the representation is that the
LSTM can struggle with very large representations (>1, 000
in this case), especially since it has to also learn the temporal
relationship between these vectors. To make the task easier for
the LSTM (which has 200 hidden units per layer), we reduced
the representation. We found that this improved performance
and that training convergence was faster in early iterations.

Second, ATL-BP uses a facial analysis model to extract
facial Action Unit (AU) presence and intensity, gaze direction,
and head pose for each frame Xt. We note these traditional
facial analysis features as ψ(Xt) (Figure 1, green). We chose
the OpenFace 2.0 model [51] to compute student head posi-
tion, head pose, gaze, facial AU presence, and facial AU
intensity from individual frames in each video segment.

For our main ATL-BP model we devised a feature rep-
resentation that is based on concatenating the outputs of
our proposed affect representation and the facial analysis
components:

φ(Xt) = ca(ρ(Xt))⊕ ψ(Xt),

where ⊕ is the concatenation operation. The compressed
embedding ca(ρ(Xt)) is 100-dimensional. The full feature
vector φ(Xt) is 149-dimensional for every frame Xt.

3) Temporal Modeling: Finally, in order to model the tem-
poral nature of the videos, we designed a unidirectional 2-layer
LSTM classifier h with 200 hidden units that processes the
feature vector φ(Xt) frame by frame and produces the final
estimate of student outcome y (Figure 1, orange).

4) Model Variants: We designed and studied two variants
of our model (Figure 6). The first variant is ATL-BP with-
out transfer learning. In this model, we removed the affect
network, and the LSTM directly interprets the output ψ of
the facial analysis network. For the second variant ATL-BP
with VGG-Face embedding, we replaced the affect network
by a face recognition model in order to extract face related
features. We selected the pre-trained VGG-Face network [19],
which computes an embedding ξ of dimension 2,622. ATL-BP
compresses the feature representation ξ(Xt), computed by
this network for each video frame Xt, using another fully-
connected layer cv, into cv(ξ(Xt)). The LSTM then interprets
the output cv(ξ(Xt)) concatenated with the output ψ of the
facial analysis network.
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Fig. 6. Model variants. ATL-BP without transfer learning removes the affect
network. ATL-BP with VGG-Face embedding replaces the affect network by
a face recognition model.

V. EXPERIMENTS

We present experiments on problem outcome prediction on
the MathSpringSP+ dataset and MathSpring Children Dataset.
These experiments study our contributions, which include
incorporating temporal information from video streams by
using an LSTM and using our affect transfer learning repre-
sentation. The experiments also show how user-personalized
training unlocks the effectiveness of our affect representation.
We also study early prediction as well as present ablation stud-
ies for the dimensionality reduction that is accomplished by the
proposed fully-connected layer. In this work we limit ourselves
to the webcam video of the student. Finally, we include addi-
tional frame-wise labels of student engagement and present
experiments showing the possibility of successfully predicting
such engagement.

A. Implementation Details

We implemented all our models in PyTorch. All the exper-
iments were conducted on an NVIDIA GeForce GTX TITAN
X GPU. For facial analysis model, we used the official imple-
mentation2 of OpenFace. We used its command line interface
to extract head pose (three-dimensional location and rotation),
three-dimensional eye gaze, and facial action units (the pres-
ence and the intensity of 18 pre-defined facial action units)
for each video. We used default values for all the parameters
of the facial analysis toolkit. Overall, a 49-dimensional feature
vector is extracted for each video. We then standardized all the
features by removing the mean and scaling to unit variance to
obtain the final feature vector ψ . We also share the details of
training the affect network and training ATL-BP for outcome
prediction as follows.

1) Training the Affect Representation Network: For source
domain affect training, we selected a ResNet-50 network. We
pre-trained the affect network on a subset of 50,000 randomly
sampled images from the AffectNet dataset and validated the

2https://github.com/TadasBaltrusaitis/OpenFace

network on 5,000 randomly selected images. We limited our-
selves to a subset since the dataset contains more than one
million examples. Note that our training and validation data
subsets are not the same as used by [50]. On our subset, our
network achieves a mean accuracy of 47.3%, which is close to
the accuracy reported by [50] on their skew-normalized vali-
dation set of 54%, and much higher than the random baseline
of 9.0%. The relatively low accuracy scores can be accounted
for by data that is unbalanced, noisy, and overall challenging.

We used CNN based face detector from dlib [52] for both
the source domain pre-training and feature extraction. We
detected and cropped the face in the image and fed it into the
affect network. We extracted the target domain affect features
from our videos by performing inference of the affect network
on every frame. We chose a granularity of three frames per sec-
ond, down from 30 frames per second in our videos, in order
to save on processing time and storage space. We found that
this granularity was a good compromise between performance
and cost. The affect network uses each frame as an input and
the last-layer features are extracted as a vector of dimension
8, 192.

We trained the affect network with the Adam optimizer with
a learning rate of 3 × 10−4, β1 of 0.9, and β2 of 0.999. The
standard batch normalization layers of the ResNet-50 were
used and fixed throughout training.

2) Training ATL-BP to Predict Exercise Outcome: For each
frame used, the feature vector computed is φ(Xt) = ψ(Xt)⊕
ca(ρ(Xt)). The original dimension of ρ(Xt) is 8,192, and we
further reduced it to 100 by a linear compression layer ca. We
observed that the dimensionality reduction due to the com-
pression layer stabilizes training and improves performance.
The feature vector φ is used to train the LSTM with two
stacked layers. We adopted a 2-layer LSTM because we found
that it provided the most appropriate model complexity to
learn reasonable complex temporal features and achieved the
best performance for our video dataset. One layer LSTM is
too simple to capture the complex features, while more lay-
ers lead to overfitting issues. Moreover, recent success of
Transformers [53] in computer vision [54], [55] has demon-
strated the potential of applying Transformers in behavior
prediction tasks. We believe that Transformers would provide
performance benefits when applied to our task of problem out-
come prediction, especially due to the long range dependencies
that they are able to capture. Therefore, a natural next step,
which we leave for future work, will be to replace the LSTM
with Transformers in our model.

Specifically, at each instant t, features φ(Xt) are fed to the
2-layer LSTM. The LSTM is trained on all the video seg-
ments. It outputs a class probability for each problem outcome.
We used the standard implementation of a unidirectional 2-
layer LSTM with 200 hidden units from PyTorch. The LSTM
is trained using the cross-entropy loss function. The Adam
optimizer is used for training. We used a learning rate of
3 × 10−5 for 30 epochs, and a batch size of 1. We used a
batch size of 1 because we found this improved generaliza-
tion compared to any other batch size. We found large batch
sizes degraded performance a great deal. This is related to
findings that stochastic gradient descent (SGD) with smaller
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batch sizes finds flatter local minima that generalize better (at
least when training is not extremely long) [56]. Specifically
here this is more important because the dataset is medium
sized and not very large. The learning rate chosen allows the
model to converge in a fair number of epochs. Any higher
learning rate that we explored either led to early divergence
of the model or lesser generalization.

B. Experimental Setup

Model Variations: In addition to our main proposed ATL-
BP, shown in Figure 1 and which we call “ATL-BP with
affect embedding” for clarity, we implemented and tested
two variants of ATL-BP, ATL-BP without transfer learn-
ing and ATL-BP with VGG-Face embedding, as described
in Section IV-B4. Furthermore, for comparison baselines, we
reproduced the method described by Joshi et al. [7] and show
results for a majority vote classifier. The majority vote clas-
sifier simply selects the most prevalent class in our dataset,
“Solved on First Try,” for every video.

Random Dataset Split: Following the experimental setup
in [7], we performed five-fold cross validation by randomly
shuffling video segments and constructing five different train
and test splits. The train splits contain 80% of the data while
the test splits contain the rest.

Experiments conducted using this random splitting exper-
imental setup cannot reliably measure generalization to new
users since videos of problems from the same student can be
present in both the training and test set. This means that the
network does not have to learn how to generalize to a com-
pletely new identity. We propose an improved experimental
setup next.

User Generalization Split: In order to test generalization
to new users we propose a leave-users-out experimental setup
where users are exclusively split into either the training or
test set. In other words, we enforce the rule that no video
clips of the same user can be in both the test and training
sets. In this manner we can measure how the system per-
forms when applied to an unseen user. This is a substantially
more challenging task since the network has to generalize to
new identities and features. We suggest that all future research
on this dataset use this type of setup. We created five leave-
users-out splits for five-fold cross-validation and train different
model variations for each split.

C. Results and Discussion

We present results and discussion on predicting seven
problem outcomes on the MathSpringSP+ dataset and the
MathSpring Children Dataset.

ATL-BP Results for Random Splits: Using the experimental
protocol of a random dataset split, our ATL-BP for problem
outcome prediction on MathSpringSP+ achieves an accuracy
of 60.2% (Table II). Compared to the previous state-of-the-
art method [7], this is an increase of 14 percent points (pp)
in accuracy. ATL-BP also achieves a 44% relative increase
in mean F-score improving from 0.238 to 0.330. The mean
F-score is computed by first computing the individual F-score
for all classes and averaging over all classes. By comparing

TABLE II
RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE

MATHSPRINGSP+ DATASET USING FIVE-FOLD CROSS-VALIDATION

AND RANDOM DATA SPLITS

TABLE III
RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE ORIGINAL

MATHSPRINGSP FOR ATL-BP FOLLOWING THE DATA SETUP

FROM JOSHI et al. [7]

TABLE IV
RESULTS FOR EARLY PREDICTION OF PROBLEM OUTCOME USING ONLY

THE FIRST FIVE SECONDS OF VIDEO FOOTAGE ON THE MATHSPRINGSP+
DATASET (FIVE-FOLD CROSS-VALIDATION, RANDOM DATA SPLITS)

the results for ATL-BP without transfer learning and those by
Joshi et al. [7], we can see that by integrating an LSTM archi-
tecture that allows for modeling the temporal component in
the videos we can achieve a marked increase in performance
(5.6 pp). We achieve a further increase in performance by
using deep embeddings (8.6 pp for using the VGG-Face
embedding ξ), and especially our proposed affect embedding
ψ (as mentioned, 14 pp).

MathSpringSP Results: We conducted experiments on the
original MathSpringSP dataset in order to verify that our ATL-
BP model with affect embeddings achieves improved results
in the same testing environment presented by Joshi et al. [7].
Our results show a consistent improvement in mean F-score
and accuracy of our method (Table III).

Early Prediction of Problem Outcome: We experimented
with obtaining prediction using only the five first seconds of
each video clip (Table IV). Early outcome prediction is impor-
tant since the ITS should have time to react and deliver the
intervention should it be decided to do so. It turns out that to
do early prediction is straightforward using an LSTM since
it outputs a prediction at every time step, as opposed to the
method proposed by Joshi et al. [7], where each video has to
be summarized into a fixed-sized vector before being fed into
a multilayer perceptron. We observe that ATL-BP achieves a
large increase (6.7 pp) in performance over [7]. ATL-BP with-
out transfer learning obtains the best F-score (0.295) in this
experimental setup.
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TABLE V
EMBEDDING DIMENSIONALITY REDUCTION ABLATION STUDY. WE

SHOW RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE

MATHSPRINGSP+ DATASET USING FIVE-FOLD

CROSS-VALIDATION AND RANDOM DATA SPLITS

TABLE VI
GENERALIZING TO UNSEEN USERS FROM THE MATHSPRINGSP+

DATASET. RESULTS FOR PROBLEM OUTCOME PREDICTION ON THE

MATHSPRINGSP+ DATASET USING FIVE-FOLD CROSS-VALIDATION

AND THE MORE CHALLENGING LEAVE-USERS-OUT SPLITS

Deep Embedding Dimensionality Reduction: We performed
an ablation study on the fully-connected layer that is used for
reducing the dimensionality of the deep embeddings that are
used as inputs for our LSTM architecture (Table V). While
the mean F-score does not change on both the VGG-Face and
proposed affect embedding ATL-BP variants, dimensionality
reduction does improve the accuracy of the models by 3.5 pp
and 1.5 pp, respectively.

ATL-BP Results for User Generalization: For the user gen-
eralization split of the training and testing data, we report
the mean F-score and mean accuracy in Table VI for the
“Majority Vote Classifier” benchmark, Joshi et al. [7] and our
proposed model with different combinations of embeddings.
We observe that the temporal modeling improves results from
Joshi et al. [7] substantially (12.1 pp in accuracy). We observe
that ATL-BP without transfer learning outperforms the ATL-
BP version with our proposed affect embedding with regards
to the F1 score. We hypothesize that leveraging affect embed-
dings is more difficult in this setup since the model does not
have access to baseline levels of expression for each user.

Personalization of Prediction: An effective real-time tutor-
ing system would benefit from personalizing its prediction
using initial data captured from a specific user stream. People
have different emotional and expression baselines that can
be learned using data collected in a trial run of the system.
Specifically, we want the model to act on the variations of our
affect embedding compared to the mean affect embedding,
since each person will have a different baseline expression
and thus a different baseline affect embedding. The model
does not have any way to integrate this information without it
being personalized for each user.

We propose a personalization scheme in which our system
can be tailored to individual users and can fully utilize our
proposed affect embedding. In this scheme, the network is
fine-tuned on the initial problems corresponding to 20% of

TABLE VII
RESULTS FOR PROBLEM OUTCOME PREDICTION (7-CLASSES) ON THE

MATHSPRINGSP+ DATASET AFTER USER PERSONALIZATION

(FIVE-FOLD CROSS-VALIDATION AND LEAVE-USER-OUT SPLITS)

TABLE VIII
GENERALIZING TO UNSEEN PROBLEMS. RESULTS FOR PROBLEM

OUTCOME PREDICTION (7-CLASSES) ON THE MATHSPRING CHILDREN

DATASET (FIVE-FOLD CROSS-VALIDATION, RANDOM DATA SPLITS)

the session for users in the test set for 30 epochs. Our experi-
ments show that user personalization unlocks the potential of
the affect features (Table VII). ATL-BP with affect embed-
ding achieves the highest F-score of 0.308 and the highest
accuracy of 55.1% compared to the other methods. Our full
method achieves a relative increase of 50% in mean F-score
as well as an absolute increase in accuracy of more than 11 pp
compared to the previous state of the art [7]. Our full method
also outperforms variants of ATL-BP, which do not use our
proposed affect representation.

Outcome Prediction for Children: As a final experiment we
tested our method on a new dataset of children working on
math problems. Results on this Children Dataset show that
our model consistently outperforms the baseline and previous
state-of-the-art method (Table VIII).

Since the AffectNet dataset mainly captures facial expres-
sions of adults, we further finetuned the affect representation
network using two datasets of children facial expressions,
LIRIS [57] and CAFE [58], in order to tailor the model
specifically for children. LIRIS contains 208 video clips of
6-to-12-year-old children showing six basic spontaneous facial
expressions, while CAFE dataset contains 1,192 images of
2-to-8-year-old children posing for seven facial expressions.
For the LIRIS dataset, we used extracted frames for train-
ing and validation. For both datasets, 90% of images were
used for training and 10% of images were used for valida-
tion. The ResNet affect model achieves 99.1% accuracy and
85.8% accuracy on the validation set of LIRIS and CAFE
dataset respectively. The trained affect network is then applied
on MathSpring Children videos.

We trained three variants of models using LIRIS only
(frames), CAFE only, and a combination of both datasets. For
random data splits, the best model among the three achieves
the highest accuracy (45.2%) and mean F-score (0.278),
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Fig. 7. Example face-cropped images showing the evolution of student expressions and gestures, with the corresponding problem outcomes. Top two rows
present the student solved the problem on the first attempt (SOF), 3-4th rows present the student solved the problem with hints (SHINT), and the bottom two
rows present the student tried but ultimately skipped the problem (GIVEUP).

TABLE IX
GENERALIZING TO UNSEEN USERS FROM THE MATHSPRING CHILDREN

DATASET. RESULTS FOR PROBLEM OUTCOME PREDICTION (7-CLASSES)
ON THE MATHSPRING CHILDREN DATASET (FIVE-FOLD

CROSS-VALIDATION, LEAVE-USER-OUT SPLITS)

improving on the previous state-of-the-art [7] (13.2 pp abso-
lute increase in accuracy and 38% relative increase in mean
F-score). Leveraging extra children data further improves the
mean F-score and accuracy over our original transfer learning
model pretrained on AffectNet (5.6 pp increase in accuracy
and 6.9% relative increase in mean F-score). For leave-user-
out splits, the results also demonstrate that our model achieves
an increase of 13 percent points in accuracy and 49% relative
increase in mean F-score on the challenging task of predicting
problem outcome using only student face movements and ges-
tures. The prediction task has 7 classes which contributes to
the difficulty.

D. Visual Examples

To visually illustrate our prediction of problem outcomes
and understand student behavior, we present visual examples
of an eighth grade student using MathSpring.

The student used MathSpring for one session of around
20 minutes and consented to have his face and screen
recorded. Figure 7 shows the evolution of student expres-
sions and gestures, and their corresponding problem outcomes.
When the student successfully solves the problem on the first
attempt (SOF), we can observe that he focus tightly on the
problem during the period (first row). When he finally solve
the problem correctly, he clenches his fist which indicates
his excitement and passion (second row). When asking for
hints, the student looks confused scratching his head but still
engaged and actively attempts to solve the problem (rows 3–4).
For the last problem (GIVEUP), the student gradually gets dis-
tracted and presents frustration and boredom (rows 5–6). These
observations are consistent with our assumption that facial
expressions and gestures provide important cues for inferring
students’ learning outcomes.

With our outcome prediction available in real time, teachers
or intelligent tutors would be able to provide interventions
and adjust learning schedules in time, to better help and assist
students.

E. Learning Outcome Based on Affect and Engagement

In academic settings, emotion and engagement can be
tightly correlated with learning outcomes and gains [32],
[59], [60], [61]. For example, positive emotions enhance
performance on tasks of problem solving [62], [63]. Emotions
such as frustration, boredom, and anxiety negatively influ-
ence learning outcomes of students [43]. To explore the
correlation of emotion, engagement, and learning outcomes,
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TABLE X
STUDENT ENGAGEMENT DATASET SAMPLES PER CLASS. COLUMN

(a) PRESENTS THE SAMPLES DISTRIBUTION FOR EACH CLASS

IN THE REAL-WORLD RAW DATA. COLUMN (b) PRESENTS

THE SAME DISTRIBUTION AFTER DOWN-SAMPLING

AND BALANCING THE ORIGINAL DATASET. BOTH

VERSIONS WILL BE MADE PUBLICLY AVAILABLE

FOR NON-COMMERCIAL RESEARCH PURPOSES

we collected additional labels of student engagement on our
MathSpringSP+ videos [47]. Specifically, we extract frames
from videos in MathSpringSP+ dataset and annotate each
frame with engagement labels (i.e., ‘looking at their screen,’
‘looking at their paper,’ or ‘wandering’). The task is then to
classify each frame into one of three engagement categories.

1) Student Engagement Dataset: We selected 400 videos
of 19 students in MathSpringSP+ dataset who consented to
have their data publicly available for research, and sampled
videos frames at one-frame-per-second (FPS). As a result, a
total of 18,721 frames have been collected for engagement
annotations. We used Amazon Mechanical Turk (MTurk) to
label each frame with one of the following three categories:
‘looking at their screen,’ ‘looking at their paper,’ or ‘wander-
ing.’ Each frame was assigned to three different crowdworkers,
and we combined three crowdworker selections into a single
label by majority vote.

The resulting dataset contains 18,721 annotated frames.
However, the class distribution is quite unbalanced: the
‘screen’ class counts 22 times more samples than the ‘wander’
class and three times more samples than the ‘paper’ class
(Table X (a)). After analyzing the distributions of the different
samples for each class, we notice that the ‘paper’ and ‘screen’
classes contain a large number of similar frames. We there-
fore create a second smaller version of the original dataset by
removing the similar samples for each class and balance the
dataset. After selecting and removing the similar frames, we
obtain a more equally distributed dataset, Table X (b), con-
sisting of around 2,000 frame samples. Finally, we split the
balanced dataset into a training and a testing set. For our test
set, 20% of the samples were selected; the remaining 80%
were used for training. In order to test and train the model
on samples coming from different students, we chose the test
samples from only three of the original 19 students.

2) Baseline Models: Given the collected, annotated, and
balanced student engagement dataset, we then explore dif-
ferent baseline models to predict student engagement. We
mainly compare two types of baselines: models based on
deep convolutional networks, and models relying on head pose
estimation.

Deep Convolutional Networks: We explored different deep
convolutional neural networks for the task of classifying the
frames. The architectures we used as the backbone model are:
MobileNet [64], VGG16 [65] and Xception [66]. The back-
bone models were pre-trained on ImageNet [67]. On top of
the pre-trained model, we added the following custom layers:

one 2D global average pooling layer, one fully-connected layer
with 128 neurons and ReLU activation, and a final output layer
with three neurons and softmax activation. To avoid overfit-
ting, we used multiple data augmentation techniques at the
input layer (Gaussian noise, color channel changes, and crop-
ping) and neurons drop-out at the head layers. We compared
the performance of different models using the global and per-
class accuracy scores. After training with frozen weights for
the backbone, we fine-tuned the last layers of the backbone
to achieve better accuracy (the number of layers fine-tuned
depends on the model complexity).

Head Pose Estimation: The head pose is a 3-dimensional
vector (i.e., yaw, pitch and roll) describing the rotation of the
head in Euler angles. We utilize a state-of-the-art head pose
estimation model to obtain accurate 3D head poses and infer
students’ engagement states based on values of head poses.
This is intuitive as students’ head poses will differ greatly
when students are either looking at their screen, looking at
their paper, or gaze wandering. While the eye gaze direction
might provide a more accurate estimation of where the stu-
dent is looking, it is more difficult to calculate especially when
eyes are occluded. When students are looking at their paper
or gaze wandering, their eyes could be fully occluded, mak-
ing it impossible to calculate eye gaze directions accurately.
Therefore, we choose to use head poses, which are highly
correlated to gaze directions but are more robust and easier
to compute, as indicators of students’ engagement states. In
addition, extracting a larger set of features (e.g., head pose,
facial action unit, and eye gaze) might potentially boost the
performance of this type of baseline. However, while this
requires delicate feature selection and engineering, we would
not expect a significant performance improvement. For sim-
plicity, we use head pose only as a baseline for the task.
Specifically, to estimate the head poses of students, we use
a deep neural network FSA-Net [68] that predicts the head
pose based on feature aggregation and regression. Given a
facial image, detected and cropped using MTCNN [69], a deep
cascaded multi-task face detector, FSA-Net combines feature
maps from different layers by spatially grouping and aggre-
gating features to harvest multi-scale information. The learned
meaningful intermediate features are then used to perform soft
stage-wise regression. Following Ruiz et al. [70], the head
pose estimation model was pre-trained on the 300W-LP syn-
thetic dataset [71] which contains 122,450 facial images with
labelled head poses. The dataset synthesized faces across large
poses (above 45°), ensuring that the trained model is robust
to self-occlusion in our student dataset.

Given the predicted 3D head pose (yaw, pitch, and roll) for
each image, we focus on two approaches for baseline clas-
sifiers. Our first method is a conditional approach with yaw
and pitch head angles as the features. By inspecting and ana-
lyzing head pose angles for different classes, we design three
conditions to distinguish head poses as either ‘looking at their
screen,’ ‘looking at their paper,’ or ‘wandering.’ When students
look at their paper, visible positive spikes in the pitch angle
and a negative spike in the yaw angle could be observed. When
students look at their screen, the yaw and pitch angles are neu-
tral at around 0. Therefore, the conditions for the conditional
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TABLE XI
RESULTS. GLOBAL ACCURACY SCORE OF PREDICTING STUDENT

ENGAGEMENT USING DIFFERENT DEEP LEARNING AND HEAD POSE

ESTIMATE APPROACHES. FROM THESE RESULTS WE CAN CONCLUDE

THAT THE DEEP LEARNING MODELS ARE MORE SUITABLE FOR TASK OF

CLASSIFYING STUDENT ENGAGEMENT COMPARED TO HEAD POSE

ESTIMATORS. ALSO, DEPENDING ON THE COMPLEXITY OF THE DEEP

LEARNING MODEL, WE REACH DIFFERENT ACCURACY SCORES, WITH

THE BEST RESULTS OBTAINED BY THE MODEL WITH

LESS COMPLEXITY, MOBILENET

classifier are as follows 1) if the yaw angle is negative and
the pitch angle is positive, we classify the set of angles as
‘looking at their paper’; 2) if the yaw and pitch poses are
both 0.0 ±0.05, we classify the set of angles as ‘looking at
their screen’; 3) if both conditions are not met, we classify
the set of angles as ‘wandering’. Our second approach uses
the classical Logistic Regression to model the probability of a
certain class. Each set of head angles (yaw and pitch of the stu-
dent’s head pose in a frame) corresponds to a data point with
each data point being annotated as one of the three labels.
We trained a 2-feature Logistic Regression classifier and each
class was weighted with respect to the class size for balancing
the dataset. Cross-Entropy loss was used as the loss function
and Stochastic Average Gradient Descent as the optimizer.

3) Experimental Results: We here discuss the accuracy
of predicting student engagement for different baselines
(Table XI). The deep learning models show a range of results,
85%–94% accuracy, depending on the model size and num-
ber of parameters. It is important to notice that all the deep
learning models reach similar performances when trained with
frozen backbone weights (between 74–79% test accuracy), but
they improve when we further fine-tune the backbone models.
A smaller model such as MobileNet allows us to fine-tune
more layers without overfitting, compared to deeper or larger
models like VGG16 and Xception. This allows the MobileNet
model to obtain a feature representation of the input images
that is more relevant for this classification task, and by conse-
quence this model reaches a higher final accuracy compared
to the others. The results and training strategy may vary when
we use different dataset configurations. We can also con-
clude from the results in Table XI that all convolutional neural
networks significantly outperform the head pose estimation
strategies. The reason for low accuracy scores of head pose
estimation strategies could be the accumulated errors in the
pipeline, such as errors in estimating head poses, and errors
in designing conditional parameters or training of Logistic
Regression. It is also possible that relying on head poses only
is not sufficient to predict the engagement label. Further details
on the per class accuracy for the best deep learning and head
pose estimation models are given in Figure 8.

4) Discussion and Future Work: We have shown that our
model can successfully predict student engagement. We sug-
gest that the presented student engagement dataset and models
enable future exploration of how affect, engagement, and

Fig. 8. Confusion Matrix Comparison. The head pose estimation model (bot-
tom) obtains a lower per-class accuracy score, compared to the deep learning
model solution MobileNet (top), which not only reaches an overall higher
accuracy but also consistently classifies different classes.

learning outcomes correlate. While previous work often inves-
tigates how emotion and engagement impact learning out-
comes, we are more interested in using learning outcomes
as indicators of emotion and engagement. As we mentioned
in the introduction, when solving problems, a smile does not
necessarily mean a student is happy, but could mean the stu-
dent is embarrassed for not knowing the answer to a question.
Relying only on facial expressions and gestures may not be
sufficient to infer a student’s actual affect and engagement
state. Learning outcomes could serve as an effective indica-
tor of a student’s real emotion and engagement. For example,
positive outcomes (SOF, SHINT, ATT) could be indicative of
positive learning activities, with paying attention and positive
emotions, while negative outcomes (SKIP, GUESS, NOTR,
GIVEUP) are indicative of negative learning activities, with
inattentive states and negative emotions. With our publicly
available MathSpringSP+ videos and annotations of student
engagement and problem outcome, we facilitate future inves-
tigations of the correlations of affect, engagement and learning
outcomes and how to utilize learning outcomes to help predict
affect and engagement of students.

Additionally, while we consider exercise outcome indica-
tive of a student’s actual engagement or disengagement with a
math problem solving activity, the main difficulty is that this
classification label of the student-problem interaction cannot
be predicted by our approach until the exercise is completed
and the student clicks on “next problem” to request a new
exercise. We acknowledge that it might be more beneficial
for a student’s learning experience if we were able to detect
the student’s disengagement (such as being able to understand
that the student is looking away, and their attention has been
lost) before the math problem solving activity has finished, so
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that MathSpring could intervene, and potentially change the
effort excerted on the exercise at hand. With our work, we can
at least aim to change the student’s interaction with the new
exercise, a goal we will address in future work.

VI. CONCLUSION

We introduce a large labeled dataset of student interac-
tions with an intelligent online math tutor that consists of
68 sessions, where 54 individual students solved 2,749 math
problems. Using this dataset we design a transfer learning
model ATL-BP that improves problem outcome predictions
for students interacting with the ITS and answering math prob-
lems. By modeling the temporal structure of the videos with
ATL-BP, we achieve a substantial increase in classification
F-score and accuracy compared to previous state-of-the-art
in this task. Additionally, using a novel affect representation
along with user personalization, we achieve a further increase
in performance. More generally, these promising results sug-
gest that leveraging affect representations might be valuable
in behavior analysis applications more generally. Our final
method achieves a 50% relative increase in mean F-score as
well as an absolute 11 percentage point increase in accuracy
compared to previous work. We collected a dataset of chil-
dren student interactions and present results on this dataset.
We show that fine-tuning of the Affect network with age-
appropriate images and video further improves performance in
this scenario. These results pave the way for future improve-
ments in solutions for this task. Finally, we present addi-
tional annotations of student engagement (‘Looking at screen,’
‘Looking at paper,’ and ‘Wandering’), which enable future
explorations of correlations of learning outcomes, emotion,
and engagement. Future tutor systems may use our proposed
outcome and engagement prediction model in order to deliver
real-time interventions to improve the learning of students.
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