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ABSTRACT

The video-based computational analyses of human face and gesture signals encompass

a myriad of challenging research problems involving computer vision, machine learning

and human computer interaction. In this thesis, we focus on the following challenges: a)

the classification of hand and body gestures along with the temporal localization of their

occurrence in a continuous stream, b) the recognition of facial expressivity levels in peo-

ple with Parkinson’s Disease using multimodal feature representations, c) the prediction

of student learning outcomes in intelligent tutoring systems using affect signals, and d) the

personalization of machine learning models, which can adapt to subject and group-specific

nuances in facial and gestural behavior. Specifically, we first conduct a quantitative com-

parison of two approaches to the problem of segmenting and classifying gestures on two

benchmark gesture datasets: a method that simultaneously segments and classifies ges-

tures versus a cascaded method that performs the tasks sequentially. Second, we introduce

a framework that computationally predicts an accurate score for facial expressivity and

validate it on a dataset of interview videos of people with Parkinson’s disease. Third,

based on a unique dataset of videos of students interacting with MathSpring, an intelligent

tutoring system, collected by our collaborative research team, we build models to predict
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learning outcomes from their facial affect signals. Finally, we propose a novel solution to a

relatively unexplored area in automatic face and gesture analysis research: personalization

of models to individuals and groups. We develop hierarchical Bayesian neural networks

to overcome the challenges posed by group or subject-specific variations in face and ges-

ture signals. We successfully validate our formulation on the problems of personalized

subject-specific gesture classification, context-specific facial expressivity recognition and

student-specific learning outcome prediction. We demonstrate the flexibility of our hier-

archical framework by validating the utility of both fully connected and recurrent neural

architectures.
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Chapter 1

Introduction

The computational analysis of images and videos to extract useful information about hu-

mans is an integral research domain within computer vision and machine learning. This

broad area of research has a wide array of applications, involving problems such as de-

tecting and recognizing people [29] and faces in images [116], tracking them in video

[61], detecting body parts and pose [133], determining what gesture [69], action [122] or

activity [85] is being performed, inferring information about emotions [103] and facial

expressions [23], among many others. In this thesis, we focus on applications related to

the analysis of signals generated specifically by human gestures and faces.

In conjunction with speech, humans use gestures to communicate ideas, feelings and

intentions. Kendon defines a gesture as ‘a label for actions that have the features of mani-

fest deliberate expressiveness’ [60]. According to this definition, gestures are a voluntary

and intentional movement of part of the body performed primarily for the purpose of ex-

pression.

Scholarly interest in gestures has been longstanding. For example, gestures were stud-

ied and conventionalized in Classical Antiquity, especially with regards to the important

role they played in oration. In more recent research pursuits, gestures have been stud-

ied through the lens of anthropology, psychology, linguistics as well as computer science.

Scholars have devised multiple methods of categorizing gestures. One such system of cat-
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egorization, devised by McNeill [77], places gesture categories in a continuum based on

its relationship to speech: on one end are gesticulations that are obligatorily accompanied

by speech, whereas on the other end are pantomimes and sign language where speech is

absent.

Computational advancements since the mid-20th century have enabled the develop-

ment of intuitive and natural paradigms of instructing, communicating and interacting

with computers. Because gestures are considered a universal and natural form of expres-

sion, they are often considered appropriate when designing new models for human com-

puter interaction. In order for the distinction between human-human communication and

human-machine communication to diminish, it is vital that algorithms learn to robustly

spot and recognize human gestures.

In addition to speech and gesture, humans use another important channel to commu-

nicate and express themselves: their face. Faces often portray the hidden, internal state

of the human mind. Humans not only use the face as a vehicle of expression and intent

but also possess the ability to read and decipher the facial expressions of others. Because

the face is such a rich source of information, equipping a computer with the ability to

accurately read emotions and affect can have numerous benefits and applications. The

field of ‘Affective computing’ delves on equipping a computer to “recognize and express

emotions, develop its ability to respond intelligently to human emotions and enable it to

regulate and utilize its emotions” [91].

In this thesis, we focus on the following challenges within face and gesture analysis: a)

the classification of hand and body gestures along with the temporal localization of their

occurrence in a continuous stream, b) the recognition of facial expressivity levels in people

with Parkinson’s Disease, c) the prediction of student learning outcomes in intelligent

tutoring systems using affect signals, and d) the personalization of models that can adapt
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Figure 1.1: A sequence of frames representing an instance of a gesture performed in the
Italian language (An example taken from the ChaLearn gesture recognition dataset).

to subject and group-specific nuances in facial and gestural behavior. We now introduce

each of these problems in more detail.

1.1 Gesture Spotting and Recognition

The problem of spotting and recognizing meaningful gestures is a challenging and im-

portant research endeavor with a broad scope of applications, such as recognizing sign-

language symbols, enabling video surveillance, establishing new interaction idioms in

gaming and entertainment, and developing new modes of human-computer interaction,

among others. In the first part of the thesis, we present a quantitative comparison of two

methods to solve the problem of spotting and recognizing gestures from a continuous input

stream.

A specific example of a gesture recognition application can be explored in the setting

of a flight deck of an aircraft carrier. Deck officers use a vocabulary of gestures to com-

municate commands such as “All clear”, “Move ahead”, “Turn left/right”, “Slow down”

etc. to aircraft pilots. However, the advent of unmanned air vehicles (UAVs) has engen-

dered the need to create a system capable of communicating the same set of commands

to these unmanned aircrafts. Equipping a UAV with a computer vision system capable of

accurately and automatically recognizing the existing set of gestures while they are being
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performed by deck officers would provide the most efficient solution to this problem, as it

would permit the continued operation of the current method of communication.

Another example of an application in gesture recognition lies in the domain of under-

standing the context provided by communication gestures. Human beings communicate

with words as well as gestures. A computer vision system capable of deciphering the ges-

tures used in specific languages, such as Italian, can provide contextual information that

aids the task of translating a foreign language (Figure 1.1).

Gestures can be recognized from a wide array of sensors, ranging from RGB cameras

that capture the motion of the human body to wearable devices with inertial motion units.

With the popularity and availability of cameras capable of capturing depth information of

a scene, gestures recognition datasets often contain 3D skeletal information of the user

as well as intensity information from image frames. Designers of gesture recognition

systems can therefore extract features from both skeletal as well as image data. We propose

a random forest-based gesture classification model, where gestures are represented by a

combination of both skeletal and image-based features.

It is important that the start and end points of a gesture be accurately identified in a

continuous temporal stream, in order to maximize the probability of correctly estimating

the gesture label. One approach in solving the segmentation and classification problem

involves separating them into two sub-problems where the task of segmentation precedes

the task of recognition. In this method, the focus is on first finding the gesture boundaries

in time. The candidate gestures produced by the segmentation algorithm is then classified.

Another approach simultaneously performs the tasks of segmentation and classifica-

tion. In methods such as this, gesture intervals for which above-threshold scores are given

by the classifier are deemed to be the labeled and segmented gesture. Given a training set

of multi-modal videos with multiple examples of all gestures in a gesture vocabulary, we
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provide a comparison of the two approaches based on random forest models, highlighting

the strengths and weaknesses of each.

1.2 Facial Expressivity Prediction

The dynamics of the human face, like gestures, also plays an important role in enabling

expressive communication and social interactions. The human face is “one of the most

powerful channels of nonverbal communication” [31].

The computational analysis of facial expressivity can have a wide range of applica-

tions [88]. For example, automatic and accurate affect sensing can play a major role in

diagnostic as well as treatment procedures in medical conditions where emotive, expres-

sive and cognitive abilities are impaired. The development of such technologies can aid

therapists and practitioners by helping them save valuable time otherwise devoted to la-

borious manual coding of patient observations. The impressive progress made in the field

of automatic facial expression analysis [24, 41, 119] has spurred computational research

in applications related to healthcare and behavioral psychology. In the second part of this

thesis, our focus is on developing a machine learning model capable of predicting facial

expressivity ratings of patients with Parkinson’s disease (PD) from short interview videos.

PD affects over 10 million people worldwide and about 1% of people over 60 years old

[1]. Patients with Parkinson’s disease often have a reduced ability to exhibit spontaneous

facial expression due to an increased rigidity of facial musculature, also known as facial

masking [113] or facial bradykinesia [13]. The reduced ability in patients to express emo-

tions can hinder aspects of their social life because they are often misperceived by others

[113]. It is therefore important for clinicians and researchers to be able to objectively as-

sess and quantify the level of active expressivity in the face, so they can measure facial

masking as a symptom of PD and test whether interventions to improve facial masking are
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effective.

Facial expressivity is inherently more difficult to measure in people with PD because

facial masking dims the clarity of muscle action shown in the face. Despite this difficulty,

there are existing manuals for objectively measuring active expressivity in the Parkinso-

nian face, one of which is the Interpersonal Communication Rating Protocol (ICRP) [111],

where active facial expressivity is among 20 indicators rated by trained experts along a 5-

point Likert scale. Raters are trained to provide a “Gestalt” rating based on the intensity

(strength of emotion or movement), duration (how long a behavior or movement lasts) and

frequency (how often a behavior or movement lasts) of the expressive behavior observed.

An active facial expressivity rating of 1 represents a person with “primarily one emotional

expression plastered on the face, with low to no movement” whereas a rating of 5 is given

to people with “highly active, animated, mobile and moving face with changing emotional

expressions” [111].

As with other systems of manual coding, rating facial expressivity according to the

ICRP brings forth challenges associated with scale and feasibility. Human coders have

successfully coded facial expression in people with PD [54], but the costs associated with

the manual assessment of all patients with PD can be prohibitively high. Comprehensive

manual coding of 20 seconds of video can take upwards of an hour, and often two coders

are needed to establish that the human coder is reliable.

Existing works involving computational analyses of facial emotions and expressivity

of PD patients are mostly limited to pilot studies comparing facial characteristics and

dynamics between a small group of PD patients and a separate control group [1, 9, 126].

An accurate machine learning model trained on an expertly annotated dataset and capable

of generalizing to new data is, therefore, an attractive proposition. Here, we utilize a

dataset of 772 short interview audio-video clips of PD patients and their corresponding
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facial expressivity labels to train a model that can accurately predict facial expressivity

levels of new PD patients. For each video, we extract interpretable visual features from

the face of the patients detected in the input frames as well as audio features from the raw

audio to produce a multimodal feature descriptor, with which we train both classification

and regression models and cross-validate them on held-out test sets.

1.3 Learning Outcomes Prediction using Affect

Automated affect analysis also has applications in the education domain. A interesting

research direction is to inquire about how modeling student affect during digital learning

experiences can be utilized to positively impact the student’s overall learning experience.

Intelligent tutoring systems (ITSs) have been developed with the aim of providing an in-

dividualized learning experience to users. One of the goals of an ITS is to build models

of the student engaged in learning, so that the ITS can adapt its support mechanisms in

order for the process of learning to be personalized [55]. It has been shown that students

experience a variety of emotions, such as interest, flow, surprise, anger, boredom, frustra-

tion, confusion and anxiety, during learning [34]. Emotions felt and displayed by students

have been shown to correlate well with their achievement in the learning task [90]. Equip-

ping an ITS with the ability to interpret such affective signals could potentially enable it to

monitor the students’ progress, provide timely interventions as well as present appropriate

affective reactions via a virtual tutor.

Affective Tutoring Systems (ATSs) use one or more sensors to observe the student in

order to infer his or her emotional state while using the ATS. Ideally, ATSs can imitate a

human teacher and adapt not only to the student’s level of knowledge but also to his or her

emotional state. Therefore, one of the primary capabilities of an ATS is to automatically

recognize basic emotions, such as happiness, anger and disgust. Examples of ATSs with
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Figure 1.2: A sequence of frames representing a variety of expressions displayed by a
student while working on math problems during a session with an intelligent tutoring
system.

this feature include EER-Tutor [138] and FERMAT [139]. In addition to the basic emo-

tions, some ITSs (e.g. AutoTutor [34], Guru Tutor [87]) possess models, which are trained

to recognize learning-specific emotional states, such as engagement, concentration, con-

fusion, boredom and frustration. Vision-based sensors such as webcams are suitable for

capturing the facial dynamics of students as they are readily available in the most com-

mon platforms used for interacting with ITSs (e.g. phones, tablets, laptops) and are less

invasive than other sensors, such as wearable devices that measure physiological signals

like skin conductivity, heart rate, muscle activity or pressure-sensitive chairs that measure

posture.

Most ATSs equipped with affect modeling capabilities attempt to predict the emotional

state of users. However, in the third part of the thesis, our focus is instead on trying to di-

rectly predict the learning outcomes of students. That is, using facial features extracted

from a video stream, we train classifiers that can directly predict the success or failure

of a student’s attempt to answer a question. In order to do so, our research collaborators

collected a novel dataset of students interacting with MathSpring [4], a web-based math-

ematics ITS (Figure 1.2). An ATS’s ability to directly predict learning outcomes can help

improve the student’s learning experience by enabling the ATS to provide interventions
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such as hints or messages of encouragement.

1.4 Personalization

In the final part of this thesis, we provide a treatment of the aforementioned problems

through the lens of personalization. Humans, by nature, are unique and individualistic.

Therefore, it is not surprising that human signals (such as the dynamics of skeletal joints

when performing gestures, or movement of facial musculature when expressing emotions)

exhibit a lot of variance. Consider, for example, a vocabulary of gestures used by members

of a household to control a smart-home device. Although each individual may perform

the gestures consistently, it is likely that the gestures are performed with user-specific

idiosyncrasies which may lead to large inter-subject variations in gesture performance.

Designing systems robust to such variations is a challenging problem. A generic gesture

classifier, trained on examples of gestures pooled together from all subjects in the training

set, is expected to be robust to variations with which gestures are performed by end-users.

However, when the signal obtained from gestures performed by different users exhibit high

variance, such systems have difficulty generalizing.

Personalizing gesture recognition systems using subject-specific training data provides

a promising approach to alleviating such difficulties. We build hierarchical Bayesian clas-

sifiers that adapt to new subjects using subject-specific conditional distributions. Different

from existing hierarchical Bayesian models, we parameterize the conditional distributions

via multi-layered Bayesian neural networks. They allow us to learn potentially complex

functional relationships between a subject’s gestures and class labels from a modest num-

ber of training examples. Furthermore, by explicitly modeling uncertainty in weights,

Bayesian neural networks are able to provide well calibrated estimates of posterior uncer-

tainty along with predicted class labels. Leveraging recent progress on scalable stochastic
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variational inference, we develop algorithms for learning the posterior distribution over

all network weights in the hierarchy. We further use the inferred posterior to drive ac-

tive learning algorithms that guide interactive labeling of personalization gestures given a

small pool of unlabeled subject-specific gestures.

First, we systematically test various aspects of the proposed models and algorithms on

three challenging gesture recognition datasets — the MSRC-12 Kinect Gesture Dataset [43],

the 2013 ChaLearn Gesture Challenge Dataset [40] and the NATOPS gesture dataset [105].

We find that even with relatively shallow two hidden layer networks, our approach is com-

petitive with the state-of-the-art gesture personalization systems. We also empirically

demonstrate that even with naive fully factorized variational inference, Bayesian neural

networks provide uncertainty estimates that are useful for guiding active learning proce-

dures. We then extend the functionality of our hierarchical framework by adding support to

recurrent architectures and demonstrate their suitability in modeling signals of a sequential

nature, such as gestures.

Second, we adapt the individual-specific hierarchical Bayesian framework to the prob-

lem of group-specific facial expressivity prediction. Most existing works on automated

facial analysis train generic classifiers for the task-at-hand, ignoring additional context

that can accompany the input. Contextual information can be derived, for example, from

the identity of the patient, the gender of the patient, the mood of the patient during the time

of the interview, etc. Here, we investigate whether contextual information can be lever-

aged to further improve the performance of the model. We experiment with two clearly

defined notions of context: (1) gender: a variable indicating the gender (male or female)

of the patient and, (2) sentiment: a variable indicating the sentiment (positive or nega-

tive) expressed during the interview. These variables are provided with the dataset and are

utilized to divide the dataset into context-sensitive groups.
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Instead of modeling individual subject-specific variances in gesture performance, we

utilize the hierarchical Bayesian framework to capture the subtle context-sensitive group-

specific variances in the input-expressivity mapping. We separate the training data into

context-sensitive groups and train our hierarchical model using multimodal feature de-

scriptors of each training video. In order to predict the facial expressivity score from a test

video, we use the parameters of the trained model associated with the context-sensitive

group to which the test video belongs.

Finally, we also evaluate our hierarchical model on the problem of personalized pre-

dictions of student outcomes. Because students vary significantly in how they display their

emotional states during learning, we explore whether the learning outcome prediction per-

formance can benefit from using personalized models.

1.5 Contributions

Here, we summarize the major contributions of this thesis:

• we present an analysis of methods for gesture spotting and classification by com-

paring a framework that employs a single multi-class random forest classification

model to distinguish gestures from a given vocabulary in a continuous video stream

with a framework that uses a cascaded approach,

• we present an interpretable system that computes facial expressivity scores in people

with Parkinson’s disease using multimodal audio-visual feature descriptors extracted

from a video sequence,

• we develop models to predict learning outcomes based on affect signals extracted

from the videos of a novel dataset of students interacting with MathSpring, an intel-

ligent tutoring system, and
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• we develop hierarchical Bayesian neural networks for personalized modeling of face

and gesture signals in the presence of inter-group and inter-subject variations. We

propose to utilize the inferred posterior to drive an active learning procedure for

personalizing the model to new users. We evaluate the personalization framework to

three tasks: subject-specific gesture recognition, context-specific facial expressivity

prediction and student-specific learning outcome prediction.

• We also develop recurrent variants of our hierarchical Bayesian model and demon-

strate its suitability in building personalized models involving sequential signals

such as gestures.

1.6 Roadmap of Thesis

The rest of the thesis is organized as follows:

Chapter 2: Related Work

This chapter reviews the literature for relevant work on the problems of gesture seg-

mentation and classification, facial emotion and expression prediction, video-based affect

recognition in intelligent tutoring systems, as well as building personalized classifiers.

Chapter 3: Comparing Random Forest Approaches to Segmenting and Classify-

ing Gestures

In this chapter, we compare two approaches to the problem of gesture localization and

recognition: a method that performs the tasks of temporal segmentation and classification

simultaneously with another that performs the tasks sequentially. We first test our proposed

gesture recognition method on the NATOPS dataset of 9,600 gesture instances from a

vocabulary of 24 aircraft handling signals, and present evaluations of our formulation in

segmenting and recognizing gestures from a continuous stream on the ChaLearn dataset

of 7754 gesture instances from a vocabulary of 20 Italian communication gestures.
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Chapter 4: Predicting Facial Expressivity in People with Parkinson’s Disease

In this chapter, we evaluate a framework that predicts a score for facial expressivity

using a variety of feature descriptors. We experiment with a descriptor of geometric shape

features of the face as well as multimodal feature representations consisting of Facial Ac-

tion Units features combined with Mel Frequency Cepstral Coefficient features extracted

from the audio stream. We train random forest classifiers and regressors based on the

various features descriptors and present results based on evaluations of our formulation

on a dataset of 772 20-second audio-video clips of interviews of people suffering from

Parkinson’s disease using 9-fold cross validation.

Chapter 5: Affect-driven Learning Outcomes Prediction in Intelligent Tutoring

Systems

In this chapter, we investigate the problem of trying to predict the learning outcome

of students attempting to solve individual problems based on signals extracted from their

faces. Based on a novel dataset consisting of video-streams of students using MathSpring,

we develop baseline models to predict problem solving outcomes, e.g. whether students

are able to solve the problem at their first attempt or whether they require hints. We

propose mechanisms by which we can use this model to improve the students’ learning

experience.

Chapter 6: Hierarchical Bayesian Neural Networks

In this chapter, we introduce hierarchical Bayesian neural networks to capture group-

specific variations in human signals. We present algorithms for inferring the posterior

distribution over all network weights in the hierarchy. We also develop methods for adapt-

ing our model to new groups when a small number of group-specific personalization data

is available. We investigate active learning algorithms for interactively labeling personal-

ization data in resource-constrained scenarios. Finally we extend the framework to support
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recurrent architectures, which are appropriate in modeling temporal tasks.

Chapter 7: Applications of Hierarchical Bayesian Neural Networks to Problems

in Face and Gesture Analysis

In this chapter, we apply the hierarchical Bayesian model to explore whether personal-

ization can be beneficial to any of the problems introduced in Chapters 3-5. Focusing first

on the problem of gesture recognition where inter-subject variations are commonplace,

we demonstrate the effectiveness of our proposed techniques by testing our framework on

three widely used gesture recognition datasets.

We then adapt the hierarchical Bayesian neural network framework to enable the learn-

ing of facial expressivity model parameters that subtly adapt to pre-defined notions of

context, such as the gender of the patient or the valence of the expressed sentiment. We

present results based on evaluations of our formulation on a dataset of 772 20-second

video clips of Parkinson’s disease patients and demonstrate that training a context-specific

hierarchical Bayesian framework yields an improvement in model performance in both

multi-class classification and regression settings compared to the same model trained on

all data pooled together.

Finally, we report results of experiments evaluating our hierarchical model on the prob-

lem of personalized predictions of student outcomes. We compare the performance of a

generic model trained on data from all students pooled together versus that of a student-

specific hierarchical Bayesian model.

Chapter 8: Conclusions and Future Work

In this chapter, we summarize the contributions we have made in the thesis and discuss

the strengths and limitations of the proposed methods. We end this thesis with a discussion

on future research directions and open problems.



15

1.7 List of Related Papers

Much of the work presented in this thesis has been published in the following journal,

conference and workshop proceedings:

1. Joshi, A., Monnier, C., Betke, M., & Sclaroff, S. (2017). Comparing random forest

approaches to segmenting and classifying gestures. Image and Vision Computing,

58, 86-95.

2. Joshi, A., Tickle-Degnen, L., Gunnery, S., Ellis, T., & Betke, M. (2016, June). Pre-

dicting Active Facial Expressivity in People with Parkinson’s Disease. ACM Inter-

national Conference on PErvasive Technologies Related to Assistive Environments

(PETRA).

3. Joshi, A., Ghosh, S., Betke, M., & Pfister, H. (2016, December). Hierarchical

Bayesian Neural Networks for Personalized Classification. Conference on Neural

Information Processing Systems Workshop on Bayesian Deep Learning (NIPSW).

4. Joshi, A., Ghosh, S., Betke, M., Sclaroff, S., & Pfister, H. (2017, June). Person-

alizing Gesture Recognition Using Hierarchical Bayesian Neural Networks. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

5. Joshi, A., Ghosh, S., Gunnery, S., Tickle-Degnen, L., Sclaroff, S., & Betke, M.

(2018, May). Context-sensitive Facial Expressivity Prediction using Multimodal

Hierarchical Bayesian Neural Networks. IEEE Conference on Automatic Face and

Gesture Recognition (FG).



Chapter 2

Related Work

Here, we review the literature of work related to the problems of gesture spotting and

recognition, facial emotion and expression analysis, and building personalized classifiers.

2.1 Gesture Spotting and Recognition

We begin by providing an overview of some of the important methods that have been used

in gesture recognition and are relevant to our work. A more comprehensive survey of

gesture recognition techniques can be found elsewhere [79], [96].

Nearest neighbor models have been used in gesture classification problems. Malas-

siotis et al.[74] used a k-NN classifier to classify static sign language hand gestures. A

normalized cross-correlation measure was used to compare the feature vector of an input

image with those in the k-NN model. Dynamic Time Warping (DTW) can be used to com-

pute a matching score between two temporal sequences, a variant of which was used by

Alon et al.[2]. A drawback of k-NN models is the difficulty in defining distance measures

that clearly demarcate different classes of time series observations.

A Hidden Markov Model (HMM) is another widely used tool in temporal pattern

recognition, having been implemented in applications of speech recognition, handwriting

recognition, as well as gesture recognition. Starner et al.[108] employed an HMM-based

system to recognize American Sign Language symbols. One difficulty while implement-
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ing HMMs is to determine an appropriate number of hidden states, which can be domain-

dependent.

The Conditional Random Field (CRF), introduced by Lafferty et al.[68] is a discrim-

inative graphical model with an advantage over generative models, such as HMMs: the

CRF does not assume that observations are independent given the values of the hidden

variables. Hidden Conditional Random Fields (HCRF) use hidden variables to model the

latent structure of the input signals by defining a joint distribution over the class label and

hidden state labels conditioned on the observations [93]. HCRFs can model the depen-

dence between each state and the entire observation sequence, unlike HMMs, which only

capture the dependencies between each state and its corresponding observation. Song et

al. used a Gaussian temporal-smoothing HCRF [104] to classify gestures that combine

both body and hand signals. They also presented continuous Latent Dynamic CRFs [106]

to classify unsegmented gestures from a continuous input stream of gestures.

Random forest models perform well in many classification tasks, work efficiently on

large datasets, and are very fast. Random forests have been applied to good effect in

real-time human pose recognition [102], object segmentation [100], image classification

[14], and sign language recognition [67] among others. Decision forests models have also

been used variedly in gesture and action recognition tasks [45], [136], [137], [129],

[18]. Miranda et al.[78] used a gesture recognition scheme based on decision forests,

where each node in a tree in the forest represented a keypose, and the leaves of the trees

represented gestures corresponding to the sequence of keyposes that constitute the gesture

as one traverses down a tree from root to leaf. Demirdjian et al.[32] proposed the use of

temporal random forests in order to recognize temporal events. Camgoz et al. [18] used

random forests to perform gesture spotting and classification. In contrast to our work,

they perform frame-level gesture classification by training a model where every individual
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frame is considered a separate training sample. Randomized decision forests have been

shown to be robust to the effects of noise and outliers. Moreover, they generalize well to

variations in data [16]. Thus, random forests are suitable for classification tasks involving

data such as gestures because data collected by image and depth sensors can be sensitive

to noise and their execution can exhibit a high level of variance.

More recently, deep learning approaches have gained popularity in gesture spotting

and recognition tasks. Neverova et al. [83] presented a gesture localization and recog-

nition scheme based on multi-modal deep learning operating at various spatial as well as

temporal scales. Pigou et al. [92] presented an end-to-end neural network architecture

incorporating temporal convolutions and bidirectional recurrence to perform gesture spot-

ting and recognition. Molchanov et al. [80] utilized 3D convolutional neural networks

to map depth and intensity input into accurate gesture labels. Du et al. [37] proposed a

hierarchical recurrent neural network framework that learns intermediate representations

from different parts of the input skeleton before hierarchically combining them to produce

the final label prediction. Liu et al. [71] presented a tree-structure based traversal of the

input skeleton to preserve the graphical structure of the human skeleton while training a

Long Short Term Memory (LSTM) based recurrent neural network.

Cameras equipped with depth sensors combined with skeleton detection algorithms

enable researchers to use features extracted from 3D joint positions in gesture and action

recognition problems. Yao et al. [135] used concatenated raw coordinates of body joints

for gesture classification whereas Xia et al. [127] employed histograms of 3D joint loca-

tions for the task of human action recognition. Raptis et al. [95] formulated an angular

representation of user skeletons as features for the problem of dance gesture recognition.

In some problems, it is advantageous to include in the feature representation, information

that 3D body joint locations are unable to capture, e.g. hand shape. The salient properties
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of hand shape can be captured using image-based features such as Histograms of Oriented

Gradients (HOG) [29]. Song et al. [104] combined features extracted from images of the

user hands with joint features to classify gestures.

In this thesis, we focus on building concise feature representations using 3D skeletal

joint-based features that capture global motion of the input gesture as well as appearance-

based features in order to obtain a more granular representation of the hand shape. Al-

though a random forest classifier does not explicitly model the inherent temporal nature

of gestural data as done by graphical models, we aim to show that our proposed robust

feature representations combined with the random forest model’s generalization capacity

can yield performance on par with those achieved by graphical models such as HMMs and

HCRFs.

2.2 Facial Expressivity Prediction

Automatic analysis of facial expressions and affect has been an actively researched topic in

the fields of computer vision and machine learning [31]. Many early works focused on the

recognition of prototypic emotions from static images [89] or video [26]. A more detailed

descriptor of the physical changes in the shape and texture of the face, named the Facial

Action Coding System (FACS) was developed by Ekman and Friesen [38] to describe

facial expressions in terms of anatomically defined Action Units (AUs). The problem of

automatically identifying the presence [7] and intensity [86] of AUs from images [110]

and video [21] has received a lot of attention in recent years. Progress in this field has

led to development of several off-the-shelf applications [30, 8] capable of detecting AU

presence and intensity values for several Action Units.

The dynamics of a person’s face can provide information regarding the person’s emo-

tional state, intention and personality, as well as cognitive and biomedical status. The
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development of computational analyses techniques of facial expressions has opened av-

enues for researchers to view investigations of emotional and cognitive impairments using

a computational lens. For example, Cohn et al. [25] conducted a feasibility study of

detecting depression using facial actions and vocal prosody. Wang et al. [123] analyzed

video-based facial expressions to study neuropsychiatric disorders such as Asperger’s Syn-

drome and Schizophrenia.

In the context of Parkinson’s disease, Wu et al. [126] conducted a preliminary study

to quantify facial expressivity of patients with PD by comparing AU activations between

a group of 7 Parkinson’s patients and 8 control patients. The authors quantify facial ex-

pressivity by manually defining a mathematical formula based on automatically detected

AUs, and demonstrate a significant difference in facial expressivity between the control

group and the patients. Bandini et al. [9] reported, from a pilot experiment involving

4 patients and 4 people in a control group, that control subjects exhibit higher distances

from a neutral face when expressing emotions compared to PD patients. Almutiry et al.

[1] found that certain expressions, such as happiness and disgust, are most discriminative

when comparing the expressive behavior of PD patients with healthy controls.

In this thesis, our focus is not on quantifying differences in facial expressivity charac-

teristics between PD patients and individuals in a control group. Instead, we use a larger

dataset of approximately 800 data points of 117 patient interview audio-video inputs and

their corresponding expertly annotated facial expressivity labels to automatically learn a

function that maps the multimodal input feature representation to the facial expressivity

score.



21

2.3 Modeling Affect in Intelligent Tutoring Systems

Another potential application of applying emotion and expression analysis is in the domain

of education. One of the drawbacks of large classroom models of pedagogy is the inability

of the teacher to cater to the varying needs of individual students. One-on-one human

tutoring, which overcomes this drawback, has been shown to be a more effective means

of teaching [121].The goal of Intelligent Tutoring Systems (ITSs) is to similarly provide

a platform capable of delivering a personalized learning experience as per the needs and

requirements of the student [55]. A popular example of an ITS is MathSpring [4], formerly

known as Wayang Outpost, which is a web-based ITS for learning mathematics concepts

for middle and high school students.

An important source of information that enables human tutors to provide a personal-

ized feedback is the affective state of the user. Students display a variety of emotions,

such as interest, flow, surprise, anger, boredom, frustration, confusion and anxiety, during

learning [34]. Emotions felt and displayed by students have been shown to correlate well

with their achievement in the learning task [90]. In recent years, advances in computer vi-

sion and machine learning have led to the development of fast and robust facial expression

analysis tools [8]. Many ITSs have incorporated variants of such emotion analysis capa-

bilities, so that they can utilize the observed affective states of the users to provide more

appropriate feedback via their user interfaces. Adapting to student affective states, such

as uncertainty and confusion, as measured by ITSs have shown to improve their effective-

ness [20, 33]. Grafsgaard et al. [52] showed that different facial expressions measured

correspond to different learning experiences.

Student affect has been modeled using a variety of signals. For example, Wixon et al.

[125] used student self-reports to build affect models. Corrigan et al. [28] trained detectors

based on log data. A common signal channel used by ITSs to model affective states is
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camera-based captures of the user’s face. For example, EER-Tutor [138] tracks the facial

features of the users with a video camera to classify the user’s face to states such as happy,

smiling, angry and neutral. Similarly, the FERMAT tutor [139] uses a video stream of the

user to classify the face into one of the seven basic emotions: angry, disgusted, scared,

happy, sad, surprised and neutral. In contrast to the well-studied basic emotions, it has

been shown that learning-centric emotions such as boredom and confusion feature more

prominently during the process of interacting with ITSs [6, 36]. AutoTutor [34] uses a

video camera as well as a pressure-sensitive chair to recognize learning-centric emotional

states such as flow, confusion, boredom, frustration and eureka. Guru Tutor [87] utilizes a

video camera and eye tracker to measure a student’s level of interest and boredom.

Another key concept in student learning is that of engagement. Automatic engagement

detection not only allows ITSs to adjust their teaching strategies in real-time, but also al-

lows educational materials to be analyzed to determine which portions causes disengage-

ment. Whitehill et al. [124] presented computer-vision based techniques for automatic

engagement detect. D’Mello et al. [35] introduced an advanced, analytic and automated

approach to measure engagement at fine-grained temporal resolutions. Kaur et al. [81]

introduced a new dataset for student engagement detection and localization in the wild.

In this thesis, we ask the following question: given a video of a student interacting

with an intelligent tutoring system, can we train a model to directly predict the learning

outcome? Compared to existing works, which focus on modeling emotional states such as

engagement or boredom, we wish to utilize facial affect signal to directly predict whether

the student will successfully solve the problem. The ability to infer whether the student is

going to solve the problem, require hints, or give up can then be used to provide appropriate

interventions.
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2.4 Personalization

Personalization approaches have been developed for speech [101], handwriting [27, 62],

facial action unit recognition [21] and gestures [59]. Work on domain adaptation that

either adapts model parameters [131] or feature representations [99] is closely related to

these approaches. Our work draws on previous efforts in hierarchical Bayesian domain

adaptation [42]. We extend this line of work by parameterizing group/domain-specific

conditional distributions via more flexible Bayesian neural networks in place of simpler

log-linear models.

A particular challenge faced by personalization systems is the small amounts of subject-

specific data available for personalization. Yao et al. [135] tackled this by recasting the

problem into one of selecting the best performing model from a portfolio of pre-trained

models. Since no new learning occurs, the approach is very data efficient. However, they

find it to be outperformed by baselines where the models are partially or fully re-trained

given new personalization instances. We deal with data paucity by resorting to Bayesian

neural networks.

Pioneering work on Bayesian neural networks can be traced back to [17, 73, 82]. Re-

cent progress in deep learning along with advances in scalable inference has reinvigo-

rated interest in them. Hierarchical Bayesian neural networks have previously been pro-

posed [49, 70]. However, they rely on expensive Markov chain Monte-Carlo inference

and fail to scale to even moderate sized architectures. In contrast, we exploit stochastic

variational methods [12, 115] that scale to both large architectures and large datasets. Pre-

vious work has developed such algorithms for Bayesian neural network [12] and Bayesian

logistic regression [115] models. We introduce a stochastic variational formulation for

hierarchical Bayesian neural networks. Bayesian neural networks have been shown to bet-

ter represent model uncertainty and are therefore appropriate in active learning scenarios
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[44]. Likewise, we exploit the inferred posterior over weights to guide active learning [58]

methods that significantly improve performance of the system in scenarios where labeling

data is expensive.

Like in gesture recognition, most existing work on problems in affect and expression

analysis focus on building generic and generalizable classifiers (e.g. [120, 63]). However,

there have been some recent works focusing on personalization of classifiers, i.e. tailoring

classifiers to adapt to individual variances, e.g. in modeling facial AU intensity [132, 21]

and pain recognition [72]. Rudovic et al. [98] used a context-sensitive model to estimate

AU intensity, where context is defined by who: the identity of the individual, when: the

timing of the facial expressions and how: how the facial expressions change over time.

In the context of ITSs, Grafsgaard et al. [53] investigated how facial expression pat-

terns differ by age. Similarly, Vail et al. [118] studied gender differences in facial expres-

sions during learning.

Unlike previously proposed works that focus on a single personalization task, we pro-

pose, in this thesis, a generic personalization framework and validate it on three human

signal analysis problems: subject-specific gesture recognition, context-specific facial ex-

pressivity prediction and student-specific learning outcome prediction.



Chapter 3

Comparing Random Forest Approaches to

Segmenting and Classifying Gestures

Performing gesture recognition in untrimmed videos is a challenging problem: in addition

to correctly identifying the gesture label, the gesture also needs to be accurately localized,

i.e. the times at which in-vocabulary gestures start and end need to be determined. In this

chapter, we compare two approaches: a method that performs the tasks of temporal seg-

mentation and classification simultaneously with another that performs the tasks sequen-

tially. The first method trains a single random forest model to recognize gestures from a

given vocabulary, as presented in a training dataset of video plus 3D body joint locations,

as well as out-of-vocabulary (non-gesture) instances. The second method employs a cas-

caded approach, training first a binary random forest model to distinguish gestures from

background and a multi-class random forest model to classify segmented gestures. Given

a test input video stream, both frameworks are applied using sliding windows at multiple

temporal scales. We evaluated our formulation in segmenting and recognizing gestures

on two different benchmark datasets: the NATOPS dataset of 9600 gesture instances from

a vocabulary of 24 aircraft handling signals, and the ChaLearn dataset of 7754 gesture

instances from a vocabulary of 20 Italian communication gestures.
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Input 

RGB images and 3-D 
skeletal data 

Extract Features 

3D joint-based + 
appearance-based 

Represent Gestures 

Concatenation of 
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of 10 temporal segments 

Train Classifier 

Train multi-class random 
forest that encodes all 

gesture classes as well as 
background 

Mine Hard-negatives 

Collect misclassified 
instances on continuous 
input of the training set 

Figure 3.1: Pipeline view of training our gesture recognition framework that performs
simultaneous spotting and classification

3.1 System Overview

Here, we describe in detail the formulation of both gesture recognition systems. We first

explain the differences in the procedures used in training our random forest frameworks,

and then illustrate how the classifiers are used to spot and classify gestures from a contin-

uous stream. Pictorial overviews of training the two frameworks are depicted in Figures

3.1 and 3.2.

3.1.1 Training

The training set of gestures used in our experiments is labeled with true temporal seg-

mentation as well as classification values. That is, each video sample used in training is

associated with a file that describes the class labels of the gestures that are present in the

video, along with their start and end frames.
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Figure 3.2: Pipeline view of training our cascaded gesture recognition framework that first
spots a gesture before classifying it

3.1.1.1 Simultaneous spotting and classification framework

Let n be the number of different gestures that are present in the gesture vocabulary. We

trained an n+1-class random forest classifier using all examples of the n different gestures

in the training set, as well as some randomly selected examples of non-gestures (found

in intervals between two gestures). Non-gestural examples may contain a sequence of

gestural silence, that is when the user is relatively static, or they may contain non-gestural

movements, that is when the user is moving or performing out-of-vocabulary gestures.

3.1.1.2 Cascaded spotting and classification framework

For the cascaded framework, we trained a binary random forest classifier using all in-

stances of the n different gestures in the training set as positive examples and an equiv-

alent number of randomly selected instances of non-gestures (found in intervals between

two gestures) as negative examples. This binary classifier was used during test time to dis-
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tinguish a gesture from the background. Additionally, we trained an n-class random forest

classifier using all examples of the n different gestures in the training set. This multiclass

classifier was used during test time to predict the class label of a candidate gesture spotted

by the binary classifier.

3.1.1.3 Feature Extraction

Each training example consists of a varying number of frames, each of which is described

by a feature descriptor. In both frameworks, our system computes normalized positional

and velocity features for nine different skeletal body joints (left and right shoulders, el-

bows, wrists and hands, as well as the head joint). Since gestures are performed by subjects

with different heights, at different distances from the camera sensor, we first normalized

the positional coordinates of the users’ joints using the length of the user’s torso as a ref-

erence. The normalized position vector for joint j at time t is:

Wj(t) =
Wr

j(t)−Wr
hip(t)

l
, (3.1)

where Wr
j(t) is the raw position vector for joint j at time t, Wr

hip(t) is the raw position

vector for the hip joint at time t, and l is the length of the torso defined as:

l = ‖(Whead −Whip)‖. (3.2)

Our system uses the normalized positional coordinates (Wx,Wy,Wz) of these nine joints

along with their rotational values (Rx, Ry, Rz, Rw), which are provided with the dataset,

and computes values for their velocities (W ′
x,W

′
y,W

′
z, R

′
x, R

′
y, R

′
z, R

′
w).

Thus, there are 126 feature descriptors extracted from 3D skeletal data for every frame.

In addition, we augment our skeletal feature vector with HOG features on 32x32 pixel
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squares centered on the left and right hands. Each 32x32 pixel square window is divided

into 4x4 cells. Each window is also divided into 3x3 overlapping blocks (each block

contains 2x2 cells) to perform normalization.We obtained a dimensionality-reduced rep-

resentation of the HOG features by performing Principal Component Analysis (PCA) and

using the first 20 principal components for each hand. The first 20 components explained

about half of the variance (0.44 %, 0.43 % for the left and right hands respectively) and

were chosen so that the resulting feature space was a balanced combination of both the

skeletal features obtained from joints as well as hand-appearance features obtained from

HOG representations.Thus, every frame of every instance in our training set is represented

by a 166 dimensional feature descriptor.

3.1.1.4 Gesture Representation

In order to remove the effects of noisy measurements, we first smoothed all features using

a moving average filter spanning 5 frames. Smoothing features slightly improved clas-

sification accuracy (an increase in classifier accuracy of 1.4% on a validation set on the

NATOPS dataset). Because instances of gestures and non-gestures in our training set are

temporal sequences of varying length, there arises the need to represent every gesture with

a feature vector of the same length. We achieved this by dividing the gesture into 10

equal-length temporal segments, and representing each temporal segment with a vector

of the median elements of all features. Using 10 temporal segments provided a balance

between keeping the feature representation concise, while encapsulating enough temporal

information useful in discerning the gesture classes. The representative vectors of each

temporal segment were then concatenated into a single feature vector.
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3.1.1.5 Random Forest Training

We defined the training set as D = {(X1, Y1), ..., (Xn, Yn)}. Here, (X1, ...,Xn) corre-

sponds to the uniform-length feature vector representing each gesture or non-gesture, and

(Y1, ..., Yn) represents their corresponding class labels.

A random forest classification model consists of several decision tree classifiers {t(x,

φk), k = 1, . . . } [16]. Each decision tree t(x, φk) in the forest is constructed until they

are fully grown. Here x is an input vector and φk is a random vector used to generate

a bootstrap sample of objects from the training set D. The ideal number of trees in our

random forest model was determined to be 500 by studying the Out-of-Bag (OOB) error

rate in the training data.

Let d be the dimensionality of the feature vector of the inputs. At each internal node

of the tree, m features are selected randomly from the available d, such that m < d. m =
√
d provided the highest accuracy among other common choices for m (1, 0.5

√
d, 2
√
d,

d). From the m chosen features, the feature that provides the most information gain is

selected to split the node. Information gain (I) can be defined as:

Ij = H(Sj)−
∑

kε(L,R)

|Skj |
|S| H(Skj ), (3.3)

where Sj is the set of training points at node j, H(Sj) is the Shannon entropy at node

j before the split, and SLj and SRj are the sets of points at the right child and left child

respectively of the parent node j after the split.

The Shannon entropy can be defined as:

H(S) = −
∑
cεC

pclog(pc), (3.4)
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where S is the set of training points and pc is the probability of a sample being class c.

We trained and saved a random forest classification model based on the features that we

extracted. There is a need to strengthen the classifier’s ability to accurately detect intervals

of non-gestures because the randomly chosen intervals of non-gestural examples fail to

fully model the class of non-gestures. In order to achieve this, we applied the random

forest model on continuous input of the training set and collected false positives and false

negatives, which are examples of intervals from the training set that the classifier fails to

classify correctly. The set of false positive and false negative instances is then added to

the original training set, and the random forest is re-trained using the new extended set of

training examples. This process of bootstrapping, as performed by Marin et al. [75], is

performed iteratively until the number of false positives is reduced below a threshold.

3.1.2 Testing

The task during testing is to use our trained random forest model to determine the tempo-

ral segmentation of gestures in a continuous video and accurately classify the segmented

gesture. A sample test video contains a number of frames, and the same features collected

during training are computed for every frame. Unlike training videos, test videos do not

contain information about where gestures start and end. Therefore, we perform multi-scale

sliding window classification to predict the class labels of the gestures, as well as their start

and end-points.

3.1.2.1 Multi-scale sliding window classification

We performed multi-scale sliding window classification to predict the class labels of the

gestures, as well as their start and end points.
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Figure 3.3: Pipeline view of testing our gesture recognition framework that performs si-
multaneous spotting and classification

For each input video, gesture candidates were constructed at different temporal scales.

Let fs be the number of frames in the shortest gesture in the training set and fl be the

number of frames in the longest gesture in the training set. Then, the temporal scales

ranged from length fs to length fl, in increments of 5 frames. Let, G = {g1, ...gn} be the

set of gesture candidates at different temporal scales. At each scale, a candidate gesture

gi was constructed by concatenating the feature vectors at an interval specified by the

temporal scale, so that the dimensions of the feature vector matched those of the gestures

used to train the classification model.

Within a buffer of length larger than the longest temporal scale, a sliding window was

used to construct gesture candidates at each temporal scale. For a buffer of size b, the

number of gesture candidates at scale si is equal to b − si + 1. We chose b to be 100

frames, which is marginally greater than the maximum length of a gesture in the training

set. Overviews of training the two frameworks are depicted in Figures 3.3 and 3.4.
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Figure 3.4: Pipeline view of testing our cascaded gesture recognition framework that first
spots a gesture before classifying it

3.1.2.2 Simultaneous spotting and classification framework

Gesture candidates generated by the sliding window within the temporal neighborhood

defined by the buffer at each scale were classified by our trained random forest model and

competed to generate a likely gesture candidate Gsi at that scale. Since gesture candidates

at the neighborhood of where the gesture is truly temporally located tend to be classified

as the same gesture, we performed Non-Maxima Suppression to select the most likely

gesture candidate.That is, for each scale si, b − si + 1 gesture candidates were generated

and the one classified with the highest confidence (Gsi) within a temporal neighborhood

was selected. The confidence score is the percentage of decision trees that vote for the

predicted class. Finally, the likely gesture candidates at the various scales competed to

generate the final predicted gesture within the buffer.

Therefore, within the buffer, the scale of the final predicted gesture helps determine the

segmentation boundaries of the gesture, whereas its class label is that which is predicted
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Gs: Ground Truth Gesture Start 
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Figure 3.5: An example illustration of the Jaccard Score

by the random forest classifier. The end point of the predicted gesture was chosen to be

the start point of the new buffer. This process was then repeated until the end of the test

video was reached.

3.1.2.3 Cascaded spotting and classification framework

In our cascaded framework, the multi-scale sliding window mechanism outputted whether

the gesture candidate was of the gesture or background class, instead of predicting the

final class label. Non-overlapping candidates predicted as gestures by the upper-level

binary classifier were then given their final gesture label by the multi-class random forest

classifier.

3.1.3 Evaluation

In order to evaluate the performance of our gesture spotting and classification frameworks,

we use the Jaccard Index score. The Jaccard Index score, in the context of gesture spotting



35

and recognition, is an intersection over union measure that incorporates the evaluation of

the predicted gesture label as well as the predicted gesture start and end points [39] and

is a common measure for such tasks [18], [83], [92]. For a given sequence of test frames

that contains a gesture, the Jaccard Index score can be computed when the ground truth

gesture label, the ground truth gesture start and end points, the predicted gesture label and

the predicted gesture start and end points are given (as illustrated in Figure 3.5).

3.2 Datasets

Here, we describe in detail the nature of the datasets we have used to test our gesture

recognition system.

3.2.1 NATOPS

The Naval Air Training and Operating Procedures Standardization (NATOPS) gesture vo-

cabulary comprises of a set of gestures used to communicate commands to naval aircraft

pilots by officers on an aircraft carrier deck. The NATOPS dataset [105] consists of 24

unique aircraft handling signals, which is a subset of the set of gestures in the NATOPS

vocabulary, performed by 20 different subjects, where each gesture has been performed 20

times by all subjects. Thus, each gesture has 400 samples. The samples were recorded at

20 FPS using a stereo camera at a resolution of 320 x 240 pixels. The videos were recorded

in such a way that the position of the camera and the subject relative to the camera was

fixed, and changes in illumination and background was avoided. The dataset includes

RGB color images, depth maps, and mask images for each frame of all videos. A 12 di-

mensional vector of body features (angular joint velocities for the right and left elbows

and wrists), as well as an 8 dimensional vector of hand features (probability values for

hand shapes for the left and right hands) collected by Song et al. [105] was also provided
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for all frames of all videos of the dataset. An example gesture for the NATOPS dataset is

illustrated in Figure 3.6.

3.2.2 ChaLearn

The ChaLearn dataset was provided as part of the 2014 Looking at People Gesture Recog-

nition Challenge [40]. The focus of the gesture recognition challenge was to create a ges-

ture recognition system trained on several examples of each gesture category performed

by various users. The gesture vocabulary contains 20 unique Italian cultural and anthropo-

logical signs. Gestural communication is a major part of communication in Italian culture,

and developing systems to recognize such gestures is a task that can have many applica-

tions.

The development data used to train the recognition system contains a total of 7,754

manually labeled gestures. Additionally, a validation set with 3,363 labelled gestures was

provided to test the performance of the trained classifier. During the final evaluation phase,

another 2,742 gestures were provided. The gesture examples are contained in several

video clips. Along with the RGB data, depth data, user mask data along with skeletal

information was also provided. Skeletal information was contained in a .csv file, where

world coordinates, rotation values and pixel coordinates were provided for 20 different

joints of the user in each frame of the video clip. An example gesture for the ChaLearn

dataset is illustrated in Figure 3.7.

3.3 Experiments

Here we describe the experiments performed to evaluate our gesture recognition system on

the two datasets. We used the NATOPS dataset to evaluate our gesture classification sys-

tem in a non-continuous setting. We used a set of gesture samples to train our gesture clas-
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Figure 3.6: RGB, Depth, and User-Mask Segmentation of a subject performing gesture ‘I
Have’ in the NATOPS dataset

Figure 3.7: RGB, Depth, and User-Mask Segmentation of a subject performing gesture
‘sonostufo’ in the ChaLearn dataset
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sifier, and tested its performance on a test-set of pre-segmented gestures. The ChaLearn

dataset consists of training and test videos where the user performs both in-vocabulary and

out-of-vocabulary gestures, with intervals of gestural silence or transitions. Thus, we used

the ChaLearn dataset to test the performance of our system on continuous input.

The difference in evaluation metrics is a consequence of the differences in the nature

of the datasets. The NATOPS dataset consists of pre-segmented gesture examples, hence

the primary task is to formulate methods to do gesture classification. The Chalearn dataset

consists of continuous videos where segments of gesture performance is interspersed with

segments of non-gestures. Thus, the challenge is to both spot the gesture and classify the

spotted gesture.

From the NATOPS dataset, we trained our gesture recognition model with the follow-

ing features sets in order to formulate a good feature representation:

(a) 3D skeletal joints and hand-shape based feature set (SK+HS): This feature set [104]

consists of 20 unique features for each timeframe for every gesture. The extracted

features are angular joint velocities for the right and left elbows and wrists, as well

as probability values of hand shapes for the left and right hands. Since each gesture

instance is described by a single feature descriptor obtained by concatenating 10

representative feature vectors, the feature vector representing a gesture instance is

of length 200.

(b) Appearance-based feature set (EOD): Each frame of the gesture instances is repre-

sented by a 400 dimensional feature vector, which was calculated using randomly

pooled edge-orientation and edge-density features. Each gesture example is repre-

sented by a single-dimension feature vector of length 4000.

(c) EODPCA: In this feature representation, we reduced the above 4,000-d feature space
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Table 3.1: Average Classification accuracy on all 24 gestures of the NATOPS dataset

Feature set Average
Classification

Accuracy

Standard
Deviation across

subjects
Feature set a (SK+HS) 84.7% 5.1
Feature set b (EOD) 76.6% 8.4
Feature set c (EODPCA) 67.7% 9.5
Feature set d (SK+HS+EODPCA) 87.3% 4.9

into a 200-d feature space via Principal Component Analyis (PCA).

(d) SK+HS+EODPCA: This feature set was obtained by concatenating the 200-d 3D

skeletal joints and hand-shape based (SK+HS) feature descriptor of a gesture with

the corresponding dimensionality-reduced edge orientation and density (EOD-PCA)

feature descriptor to form a 400-d feature vector for every gesture.

For each feature set described above, we trained random forests with 500 trees on 19

subjects and tested on the remaining subject in a leave-one-out cross-validation approach.

We computed the average recognition accuracy (averaged across all subjects and all

gestures) of the random forest classifier on the four different feature sets (a) - (d) of the

NATOPS dataset for all 20 test subjects each performing the 24 gestures in the vocabulary

3.1. The feature set containing 3D skeletal joints and hand-shape features (SK+HS) is

correctly classified 84.77% of the time, whereas the feature set containing features based

on edge density and orientation is correctly classified 76.63% of the time. This suggests,

in our case, that 3D joint-based based features encode more class-discerning information

than features based on edge density and orientation. However, the highest classification

accuracy of 87.35% is achieved on the feature set that combines joint-based features with

appearance-based features, suggesting the benefit of combining the two approaches of

collecting features.
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Figure 3.8: Some pairs of similar gestures in the NATOPS dataset
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Figure 3.9: Confusion Matrix for pairs of similar gestures in the NATOPS dataset

Gesture pairs (2,3), (10, 11) and (20, 21) were confused, often getting misclassified

as the other 3.8. Figure 3.9 uses a confusion matrix to illustrate the misclassifications

between these pairs of similar gestures.

We compared the classification performance of our random forest classifier with the

performance of other classifiers that have been used on this dataset (Table 3.2). Our ran-

dom forest approach on the challenging subset of similar gestures, tested on samples from

5 subjects as specified by Song et al. [107], yields results that exceeds those produced

by the state-of-the-art (Linked HCRF) (Table 3.2). The graphical models presented by

Song et al. [107] were trained using feature set a (SK+HS), whereas we use feature set d

(SK+HS+EODPCA) to train our gesture recognition model.

From the ChaLearn dataset, we trained our gesture recognition model with the follow-

ing feature sets:

(a) Raw 3D skeletal joint data (RAW): Features contain unedited raw skeleton data, that
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Table 3.2: Performance comparison on pairs of similar gestures in the NATOPS dataset
with other approaches (The HMM, HCRF, and Linked HCRF) presented by Song et al.
[107].

Classifier Average Classification Accuracy
HMM 77.6%
HCRF 78.0%
Linked HCRF 87.0%
Random Forest (our) 88.1%

is, each frame consists of 9 values for all 20 joints. The feature vector per frame has

180 dimensions, and per gesture has 1800 dimensions.

(b) Normalized skeletal joint positions and velocities (SKPV): This feature set contains

normalized positional and velocity data for 9 joints. The feature vector per frame

has 126 dimensions, and per gesture has 1260 dimensions.

(c) Normalized skeletal joint positions, velocities and accelerations (SKPVA): This fea-

ture set contains positional, velocity, and acceleration data for 9 joints. The feature

vector per frame has 189 dimensions, and per gesture has 1890 dimensions.

(d) SK+HOGPCA: This feature set was obtained by concatenating the 1260-d feature

vector of normalized skeletal joint positions and velocities (SK) with the 400-d fea-

ture vector of HOG data for 32x32 pixel squares around the left and right hands

whose dimensionality has been reduced by PCA. The resultant feature vector per

gesture example is 1660-d.

For each feature set described above, we trained random forests with 500 trees on

gesture instances from the training and validation sets, and tested the performance of our

classifier on the test dataset. The division of the data into training, validation and test sets

has been described earlier [39].
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Table 3.3: Average classification accuracy on all 20 gestures of the ChaLearn dataset

Feature set Average Classification Accuracy
Feature set a (RAW) 81.4%
Feature set b (SKPV) 88.1%
Feature set c (SKPVA) 83.5%
Feature set d (SK+HOGPCA) 88.9%

Figure 3.10: Plot comparing the Jaccard index scores of training the simultaneous and
sequential classifiers with number of training iterations

The feature set that combines normalized positional and velocity information (SKPV),

with HOG features of the hands (HOGPCA), is correctly classified correctly 88.91% of

the time (Table 3.3, which is the highest average classification accuracy of all feature sets.

The iterative procedure of training a random forest improves its capacity to correctly

classify and segment gestures for both methods. This is evident in the increase in Jaccard

scores on the training sets (Figure 3.10).

Table 3.4 shows the Jaccard score of our method compared with the winning scores

of the ChaLearn gesture recognition challenge. The competition winner used information

from skeleton joints, intensity and depth videos in a deep neural network framework to
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Table 3.4: Jaccard Index scores on ChaLearn Gesture Recognition Challenge 2014 [39]

Method Jaccard Index Score
Deep Neural Network
[83]

0.87

Simultaneous Spotting
and Classification

0.68

Sequential Spotting and
Classification

0.72

achieve a Jaccard score of 0.84 [84]. Our classifier achieves a good recognition accuracy

of 88.91% on pre-segmented gestures. One benefit of using a cascaded gesture spotting

and classification framework is that it enables separate evaluations of the spotting and

classification schemes. The framework which performs spotting and classification simul-

taneously achieves a Jaccard score of 0.68 whereas the cascaded framework that first spots

a gesture before classifying it achieves a score of 0.72.

3.4 Summary

Our method consists of first creating a uniform fixed-dimensional feature representation

of all gesture samples, and then using all training samples to train a random forest. On a

challenging subset of the NATOPS dataset, our approach yields results comparable to those

produced by graphical models such as HCRFs. Although a random forest classifier does

not explicitly model the inherent temporal nature of gestural data as done by graphical

models, its performance in accuracy on this particular dataset exceeds that achieved by

graphical models such as HMMs, and different variants of HCRFs, which are presented by

Song et al. [107]. Additionally our experiments also show that classification accuracy was

improved by combining 3D skeletal joint-based features with appearance-based features,

thus underlying the importance of a well-chosen feature set for a classification task.
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We have presented a comparison of random forest frameworks for a multi-gesture clas-

sification problem on a continuous setting. On the ChaLearn dataset, our classifier yields

an average accuracy of 88.91 % when tested on a set of segmented gestures. However,

the task of simultaneously detecting and classifying gestures is a more difficult challenge

than classifying accurately segmented gestures. Doing gesture spotting and classification

by employing a cascaded framework yields better results than doing simultaneous spotting

and classification, suggesting that solving the two problems sequentially is advantageous,

especially in datasets where gestures are separated by background.



Chapter 4

Predicting Active Facial Expressivity in People

with Parkinson’s Disease

Our capacity to engage in meaningful conversations depends on a multitude of commu-

nication signals, including verbal delivery of speech, tone and modulation of voice, ex-

ecution of body gestures, and exhibition of a range of facial expressions. Among these

cues, the expressivity of the face strongly indicates the level of one’s engagement during

a social interaction. It also significantly influences how others perceive one’s personal-

ity and mood. Objective automated affect analysis systems can be applied to quantify

the progression of symptoms in neurodegenerative diseases such as Parkinson’s Disease

(PD). PD hampers the ability of patients to emote by decreasing the mobility of their facial

musculature, a phenomenon known as “facial masking.”

In this chapter, we investigate how to computationally predict an accurate and objective

score for facial expressivity of a person. We first present an exploratory Action Units-based

analysis of a dataset of video clips of Parkinson’s patients, attempting to spot trends in

how various action unit occurrences vary across patients labeled with different expressivity

levels. We then compare predictive models of facial expressivity based on different feature

representations: first a baseline model trained on geometric shape features of the face,

followed by models trained on more informative action unit features combined with audio

features. We evaluated our formulation on a dataset of 772 20-second video clips using
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9-fold cross validation. We also provide insight on both geometric as well as action unit

features that are important in this prediction task by computing variable importance scores

for our features.

4.1 Dataset

The dataset consists of 805 video samples. This dataset was originally collected by Tickle-

Degnen et al. in a previous study to determine the effects of self-management rehabilita-

tion on Health-Related Quality-Of-Living in Parkinson’s disease [112]. Participants (N =

117) in this study were divided randomly into three groups based on the type of rehabili-

tation in a 6 week intervention program. All participants in this study had previously been

diagnosed with Parkinson’s disease by a movement disorder specialist and had the ability

to understand and to communicate with personnel [112]. Patients were videotaped partic-

ipating in standardized social interactions, where cameras were placed to show a mostly

frontal face and torso view. From the videotapes, a 20 second representative segment

consisting of patients speaking about a positive or negative experience was chosen for

analysis. Each video was given 5-point Likert scale ratings for the variables of the ICRP,

one of which measures active expressivity of the face, by at least four trained research

assistants and a composite score for each variable was computed by taking the average of

the scores provided by each rater. Using the intra-class correlation coefficient (ICC), the

inter-rater reliability for the variable representing the active expressivity in the face was

reported to be .89 (for n = 4 raters) and .67 (for n = 1 rater) [111], suggesting a reasonable

level of agreement.

For our experiments, video samples where the subject’s face could not be detected in

a sufficient number (30) of frames due to occlusion or bad illumination were discarded

while building our expressivity prediction model, reducing the size of the dataset from
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805 to 772 video samples. This threshold was chosen to maintain a sufficient number of

video-label pairs for training while ensuring that features could be extracted from each

sample in order to contribute to building an accurate model. The ground truth expressivity

labels yi ∈ R for each video was taken as the average of 4 expert ratings.

4.1.1 Exploratory Data Analysis

Facial action units are components of the facial action coding system [38], which was de-

veloped to taxonomize human facial movements by their appearance on the face. Because

Facial Action Units (AUs) are precisely and anatomically defined, they serve as good can-

didates to use as features in applications requiring interpretability. Since the ground truth

expressivity labels are continuous values, we discretized them into 4 classes to aid our

exploratory analyses. Classes 1, 2, 3 and 4 contain samples with facial expressivity ratings

in the range [1, 2), [2, 3), [3, 4) and [4, 5] respectively. We visualized how often and with

what intensity various action units occur on average for the different expressivity classes

of the entire dataset. For each video, we aggregated AU presence values weighted by their

respective intensity values and normalized them by the total number of frames in which

the face was detected:

AUOa =
1

N

∑
j

AUIja × AUP j
a , (4.1)

where, AUOa represents the mean Action Unit Occurence for AU a of the video, N rep-

resents the number of frames in the video in which the face was detected and AUIja and

AUP j
a represent the presence and intensity values of AUa for frame j respectively.

For all videos belonging to a specific facial expressivity class, we computed the mean

AUO for 17 AUs whose presence and intensities were detected by OpenFace and plot

them (Figure 4.1). Although it is challenging for automatic AU recognition methods to
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Figure 4.1: For each class in the dataset, the average Action Unit Occurence (AUO) is
plotted for 17 different AUs. For each subplot, the x-axis represents the 4 facial expressiv-
ity classes whereas the y-axis represents the mean AUO score.
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generalize well to datasets beyond the ones on which the models have been trained, we

observed that they capture enough signal allowing the analysis of some interesting trends.

On average, we found that the AUOs for several AUs increased when facial expres-

sivity increases. For example, AUs corresponding to brow raising (AU1, AU2), lip corner

pulling (AU12), chin raising (AU17), lip stretching (AU20) and jaw dropping (AU26) oc-

cured more frequently in videos with higher expressivity values. This indicates that in

people deemed to have higher values of facial expressivity, certain Action Units are more

frequently activated with higher intensities. For other action units, such as AUs corre-

sponding to brow lowering (AU4), lip tightening (AU23) and blinking (AU45), a clear

linear trend was absent. The AU representing upper lip raising (AU10) has the highest

AUO values across all classes on average due to the fact that patients are speaking for the

entire duration of the video clip.

4.2 System Overview

Here, we explain the elements of our expressivity prediction framework in detail:

4.2.1 Input

The input to our system consists of 20-second audio-video clips of interviews of subjects

facing the camera. Most frames in the sequence of images in the video contain full frontal

faces of the subject along with the torso. Videos where the frontal face of the subject

cannot be detected in a significant number of contiguous frames due to occlusion by the

hand or severe out-of-plane rotation of the head were discarded from the training and

testing procedure in our framework.
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Figure 4.2: Geometric features, which capture facial dynamics, computed by our system

4.2.2 Feature Extraction

From the raw input, we experimented with several feature representations in order to train

our expressivity prediction models.

4.2.2.1 Geometric Features

Aside from being informative about discriminative facial events, each geometric attribute

has the advantage of being easily interpretable. Geometric features that measure the dis-

tance between the brows and the eyes, the height of the eye, the height of the mouth and the

angle between the mouth corners have been commonly used in facial expression analysis

[31]. Moreover, the facial dynamics associated with these features are studied by ICRP

raters while determining the rating for facial expressivity. We aimed to not only maximize

expressivity prediction accuracy but also provide insight on the geometric features that are
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most discriminative. Figure 4.2 illustrates the the geometric features that we computed in

this framework.

In order to compute the aforementioned geometric features, we used a robust facial

landmark tracker by Asthana et al. [5]. For every frame, the tracker outputs the x and y

coordinates of 59 facial landmarks, as well as pitch, roll and yaw angles to describe head

pose. Since, active expressivity of the face is a summary score, we extracted geometric

features from the temporal signals associated with corresponding facial landmarks in a

contiguous sequence of frames.

First, we set the landmark between the two eyes as the origin of the reference frame.

To account for the variation in the distances between the subject and the camera and

the dimensions of the faces of the different subjects, we normalized the coordinates of

the landmarks by taking the inter-ocular distance of the subject as a reference. From

the normalized coordinates of the facial landmarks, we extracted distances between cer-

tain facial landmarks to describe the dynamics of the eyes (Deyeright, Deyeleft), eyebrows

(Deyebrowright, Deyebrowleft) and mouth (Dmouthheight, Dmouthwidth) at each frame (Figure

4.2).

For each of these distance signals, we computed their first derivatives. Finally, for

each signal channel, we computed four quartile values, the standard deviation, and peak

frequency, and concatenated them to form a single 72-dimensional representative feature

vector.

4.2.2.2 Action Unit Features

Facial action units provide a more detailed description of the movements and dynamics

of the face than geometric distances. In order to make use of this richer representation,

we extracted 18 AU presence and 17 AU intensity values for every input frame using
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OpenFace [8], an open-source library for action unit computation. In order to compute

an aggregate feature representation from the per-frame AU presence and intensity values,

we used statistics (mean, standard deviation, min and max) for each feature to produce a

140-dimensional visual feature representation.

4.2.2.3 Audio Features

We also wished to investigate whether facial expressivity is correlated with vocal qualities.

In order to explore whether facial expressivity can be predicted from the raw audio, we

extracted Mel-Frequence Cepstral Coefficient (MFFC) features using the Librosa library

[76]. We also computed the same statistics from the MFCC features to obtain a 160-

dimensional audio feature representation.

4.2.3 Feature Importance

Feature importance scores indicate how useful a given feature or attribute is in the clas-

sification or regression task. One simple and interpretable method of estimating the im-

portance score for a feature is to measure the difference in model error before and after

randomly permuting the values of the feature during training [16]. If the difference in

error before and after the process of noising up the feature variable is large, one can as-

sume that it plays an important role in the regression or classification task whereas if the

difference is negligible, one can assume that the feature has little importance.

4.3 Experiments

Here, we provide a description of the experiments performed on the dataset to evaluate

our facial expressivity prediction framework. We first obtained baseline results by training

and testing our framework using geometric features. We improved upon those results by
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utilizing a combination of action unit based features as well as audio based features. For all

experiments, we evaluated our models using subject-independent 9-fold cross-validation

with the feature representations described above.

4.3.1 Geometric Features

(a) Mouth shape statistics feature set (MS): For each sample video, we computed, for

every frame, distances to describe the movement of the mouth. The vector of dis-

tances Dmouthheight and Dmouthwidth captures the dynamics of the shape of the mouth.

For each distance vector, we computed their first derivatives. Finally, for each sig-

nal channel, we computed four quartile values, the standard deviation, and peak

frequency, and concatenated them to form a single representative 24-dimensional

feature vector.

(b) Eye shape statistics feature set (ES): In this feature representation, we computed

distances to capture the dynamics of eye and eyebrow movement. The vector of

distances Deyeleft and Deyeright measures the movement of the left and right eye-

lids respectively. The vector of distances Deyebrowleft and Deyebrowright measures the

raising of the left and right eyebrows. For each distance vector, we computed their

first derivatives and for each signal channel, we computed four quartile values, the

standard deviation, and peak frequency, and concatenated them to form a single

representative 48-dimensional feature vector.

(c) Combined Geometric shape statistics feature set (MS+ES): In this feature represen-

tation, we concatenated the aforementioned feature vectors to produce a combined

72-dimensional feature vector.
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For each feature set described above, we trained and tested each feature representation

using a baseline regression model of random forests with 150 trees using 9-fold cross-

validation. We determined the ideal number of trees in the forest by observing the average

Out-Of-Bag (OOB) error rate while training our model with each feature set.

We computed the mean absolute errors and R2 scores averaged over all folds along

with their respective standard deviations for all feature sets. The Mean Absolute Error

(MAE) is given by:

MAE =

∑N
i=1 |Yi − Ypredi |

N
, (4.2)

where, Yi and Ypredi correspond to ground truth and predicted scores and N is the

number of test samples. The MAE score accounts for the average absolute error of the

predicted scores.

The R2 score is given by:

R2 = (1−
∑N

i=1(Yi − Ypredi)2∑N
i=1(Yi − Ymean)2

)× 100, (4.3)

where, Ymean corresponds to the mean of the ground truth. TheR2 score is based on the

ratio of the error made by the model to the error made by a baseline predictor that always

predicts the mean score of the training data. The R2 score gives a measure of the relative

improvement in the Mean Square Error (MSE) of our regression model with respect to the

baseline mean expressivity predictor.

Our analysis shows that the feature set containing eye shape statistics (ES) has the

lowest mean absolute error of 0.56, and the highest R2 score of 42.33, averaged over 9

folds (Figure 4.3). The feature set based only on mouth shape dynamics performs worse

on both measures.
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Figure 4.3: (Left) The mean MAE-scores and their standard deviations for models trained
using different geometric feature sets (MS, ES, MS+ES). (Right) The mean R2 scores and
their standard deviations for models trained using different geometric feature sets (MS,
ES, MS+ES).

Figure 4.4: Bar graph displaying features with 10 highest feature importance scores. (std:
standard deviation, pf: peak frequency, Q: quartile)
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For the MS+ES feature set, we computed the feature importance estimates, averaged

over all folds, and sorted them. The ten features with the highest importance scores are

shown in Figure 4.4. The average difference in MSE before and after randomly permuting

this set of features is the highest among all features. We observe that different attributes

of Deyebrowleft, Deyebrowright and Dmouthheight distance vectors populate this list, indicating

their importance to the regression task.

4.3.2 Action Unit and Audio Features

For experiments with action unit and audio feature representations, we trained regression

models using Hierarchical Bayesian Neural Networks (HBNN), a supervised machine

learning framework which will be introduced in Chapter 6. We trained a model with 1

hidden layer containing 50 hidden nodes, and RMSprop [114] was used for optimization.

We trained regression models with all data pooled into one group and trained our model

with visual features, consisting of Action Unit statistics (AU), audio features, consisting

of MFCC statistics (MFCC), as well as a combined audio-video feature representation

(AU+MFCC) (Figure 4.5).

We found that the model trained solely on AU features obtained a mean absolute error

(MAE) of 0.51 and an R2 score of 39.8. We note that this regression model performs

better than the baseline random forest model trained on geometric features, as described

above. We found that using features computed from the raw audio also led to reasonable

model performance (0.62 mean MAE, 26.6 mean R2 score). In instances where the video

is missing, corrupted, or of low quality for automated facial analysis, expressivity could

therefore be estimated solely from audio. However, using a combined multimodal feature

representation of both video and audio features yielded the best performance (mean MAE-

score of 0.49, mean R2 score of 47.3).
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Figure 4.5: (Left) The mean MAE-scores and their standard deviations for models trained
using different audio-video feature sets (AU, MFCC, AU+MFCC). (Right) The mean R2

scores and their standard deviations for models trained using different audio-video feature
sets (AU, MFCC, AU+MFCC).

Figure 4.6: Bar graph displaying aggregated feature importance scores for the different
action units.
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Using the model trained on visual features (AU), we also computed an estimate of

feature importance for all visual features over all folds (Figure 4.6). In order to obtain a

heuristic of importance associated with each individual AU for the task of facial expressiv-

ity prediction, we averaged the scores for all features associated with any given action unit.

For example, the importance score for AU5 (Upper Lid Raiser) is computed by taking the

mean of all feature importance scores corresponding to the 8 features associated with AU5

(means, standard deviations, maxes and mins of AU5 presence and intensity values).

AU5 (Upper Lid Raiser), often associated with expressions displaying shock and anger,

and AU12 (Lip Corner Puller), associated with expressions containing smiles, scored the

highest in the AU importance heuristic, whereas AU45 (Blink) scored the lowest. It is

interesting to note that AUOs computed for AU5 and AU12 (Figure 4.1) exhibited an

increasing trend with higher expressivity, which is absent for AU45.

4.4 Summary

Automated assessment of facial expressivity in Parkinson’s Disease patients has the po-

tential to be a useful tool for clinicians in this field. However, most existing works in the

domain are limited to small-scale pilot studies comparing the characteristics and dynam-

ics of facial expressions exhibited by a small group of PD patients and a separate control

group. In this work, we utilized a dataset of 772 short audio-video clips of 117 PD pa-

tients along with their facial expressivity labels to train a machine learning model capable

of predicting the facial expressivity ratings of new audio-video clips.

We provided an exploratory analysis of facial expressivity in terms of how often vari-

ous facial Action Units are activated in the videos in the dataset, weighing the activations

by their intensities. We observed an increasing trend of AU occurences for several action

units, such as AUs 1, 2, 5 and 12 with increasing facial expressivity. We also computed a



60

heuristic importance score for each AU and found that AUs 5 and 12 were deemed most

important in the expressivity prediction task, while AUs 17 and 45 were deemed the least

important.

We presented a baseline random forest regression framework to predict active expres-

sivity of the face. The method consists of first detecting facial landmarks for a sequence

of continuous frames from an input video and extracting geometric shape features. Each

input sample was represented by a feature vector computed from statistics of the geomet-

ric shape signals. A model trained on these features achieved an average mean absolute

error of 0.56 and R2 score of 40.68. Additionally, we computed importance scores for

each feature to provide insight into what geometric shape features are most important in

this challenging prediction task.

Finally, we demonstrated the utility of extracting features from not only the visual

domain but also the audio in order to accurately predict facial expressivity, finding that a

model trained on a combined audio-visual feature representation (MAE score of 0.49, R2

score of 47.3) comfortably outperformed our geometric features-based baseline model, as

well as models trained on features extracted from a single modality.



Chapter 5

Affect-driven Learning Outcomes Prediction in

Intelligent Tutoring Systems

Affect-sensitive intelligent tutoring systems attempt to infer the emotional state of users

from affect signals and utilize that information to provide responsive interventions that

improve the students’ learning experience. An important facet of ITS research, which can

accelerate the development of effective affect analysis algorithms, is the availability of

education domain-specific datasets that can be shared by researchers to develop, improve,

and evaluate affect-sensing machine learning algorithms. Considering the dearth of large-

scale, publicly available affect datasets in learning and education settings, our research

collaborators first collected a facial affect dataset of videos of students working on math

problems in MathSpring, a web-based ITS. We then processed this large-scale raw data

into a supervised machine learning dataset, where each data instance corresponds to a

short videoclip of a student working on a single problem and its corresponding label is the

problem outcome.

While most works on affect analysis in educational settings propose methods to model

student emotions, such as anger, surprise, engagement, frustration etc., we focus in this

chapter on directly mapping useful representations of the facial affect input into predic-

tions of problem outcome labels.
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Figure 5.1: Example images of dataset collected from different modalities: A front facing
webcam captures the subject while she looks at the screen (left), a secondary GoPro cam-
era is placed at an angle on the laptop trackpad in order to capture the student’s face when
she faces down to work on the problem at hand (middle) and the MathSpring interface’s
clickstream logs capture the mouse coordinates of the user (right).

5.1 Dataset Collection and Annotation

The dataset was collected by our research collaborators and consists of video recordings of

college students participating in math problem-solving sessions in MathSpring, a popular

browser based ITS intended to aid students in the learning of mathematics concepts. A

total of 30 students (4 males, 26 females) participated in the study, with several students

taking part in multiple sessions, each of which lasted approximately one hour. In total, 38

student sessions were recorded, from which 1596 problem samples were extracted.

The data was collected in a classroom setting, where the students were asked to solve

the MathSpring problems on a laptop, while being recorded by two cameras: the laptop

webcam along with a GoPro camera placed on the trackpad of the laptop. The purpose

of recording with the GoPro was to capture the faces of the participants while they were

facing down, for example, when writing on a sheet of paper on the desk while working on

the Math problem, and therefore not properly visible on the webcam. All participants pro-

vided consent, following due process, in order to facilitate publicly releasing the dataset
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to foster research in the area. In addition, the clickstream data of the users’ mouse coor-

dinates were also captured by the MathSpring interface (Figure 5.1). In this chapter, we

only utilized the webcam stream, leaving multimodal affect analysis from all data streams

for future work.

Each data instance consists of a video clip of the student working on a single problem.

These were obtained by trimming the raw videos based on problem start and end times

recorded in MathSpring’s log file. Each data instance is associated with the problem-

solving effort outcome label. The effort labels are enumerated below:

1. ATT (attempted): student did not see any hints but solved question after 1 incorrect

attempt,

2. GIVEUP: student performed some action but did not solve problem at all,

3. GUESS: student did not see hints, but solved question after greater than 1 incorrect

attempts,

4. NOTR (not read): student performed some action, but the first action was fast,

5. SHINT (solved with hint): student eventually got the correct answer after seeing one

or more hints,

6. SKIP: student skipped problem with no action at all, and

7. SOF (solved on first attempt): student answered correctly in first attempt, without

seeing any hints.

Different from existing affect-sensing ITSs, the primary challenge is to build models

that attempt to directly predict the outcome of the problem as early as possible, based on
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the affect signals displayed in the face as captured by the camera. An accurate early pre-

diction of problem outcome could then be used by the ITS to provide effective, appropriate

and proactive interventions to improve the student’s learning experience.

5.2 Exploratory Data Analysis

5.2.1 Label Distribution

We first plot the distribution of effort labels in the collected dataset (Figure 5.2). Among

all the data instances, more than half of the data instances consist of problems solved at

first attempt (SOF), whereas instances corresponding to all other labels correspond to less

than half of the entire dataset. The class that occurs least frequently in this dataset are

instances where the students give up (GIVEUP). One conclusion to be drawn from the

distribution of effort labels is that the students in our experiments were not sufficiently

challenged. This is in line with our initial expectations, as MathSpring’s problem reposi-

tory was designed primarily for middle and high school students, whereas the participants,

who were recruited with the purpose of acquiring consent for public release of the affect

dataset, were undergraduate students. This analysis can inform future data collection, in

order to garner a more balanced label distribution with sufficient examples that span the

effort label space.

5.2.2 Problem Times Analysis

We also plot the average time taken for problems to be completed for different labels in

the effort axis (Figure 5.3). We can observe that students, on average, take the longest time

while solving a problem with the help of hints (SHINT). Students, on average, take less

time to solve a problem at first attempt (SOF) than solving a problem with hints (SHINT),

solving a problem after multiple attempts (ATT), guessing an answer (GUESS) and giving
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Figure 5.2: Distribution of dataset according to effort labels

Figure 5.3: Average time for problem completion according to effort labels
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up (GIVEUP). The label which, expectedly, corresponds to the least amount of time taken

by the participant is when the ITS deems that the student has not read the problem (NOTR).

5.2.3 Action Unit Analysis

Because of the interpretability of Facial Action Units (AUs), we visualized how often and

with what intensity various action units occur on average for the different effort and emo-

tion classes of the entire dataset. For each data instance, we aggregated AU presence values

weighted by their respective intensity values and normalized them by the total number of

frames in which the face was detected:

AUOa =
1

N

∑
j

AUIja × AUP j
a , (5.1)

where, AUOa represents the mean Action Unit Occurence for AU a of the video, N rep-

resents the number of frames in the video in which the face was detected and AUIja and

AUP j
a represent the presence and intensity values of AUa for frame j respectively.

For all videos, we computed the meanAUO for 17 AUs whose presence and intensities

were detected by OpenFace and plotted them separated by effort classes (Figure 5.4).

From the mean AUO plots, we can observe some interesting average trends. For example,

AUs 4 (Brow lowerer), 7 (Lid tightener) and 17 (Chin raiser) are activated comparatively

highly across all effort labels, whereas AUs 2 (outer brow raiser), 5 (upper lid raiser) and

20 (lip stretcher) are not. It is interesting to note that AUs 2, 5 and 20 are associated

with the emotions of fear and surprise. Another interesting trend is that the mean AUOs

across all AUs are higher for instances labeled SHINT compared to inputs labeled SOF,

indicating that participants offer more affective expressiveness when requiring hints to

solve a problem compared to when they solve them at first attempt.
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Figure 5.4: Average Action Unit Occurrence distributed according to effort labels
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Figure 5.5: Average Action Unit Occurrence distributed according to effort labels for the
first 10 seconds of the input
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In order for the ITS to provide timely and proactive interventions, the ITS needs to

forecast problem outcome labels as early as possible. We plotted the AUOs for the first 10

seconds of the input (Figure 5.5). Comparing Figures 5.4 and 5.5, we can observe that the

AUOs when observing only the first 10 seconds of the data are not remarkably different to

the AUOs when the entire input is observed. This indicates that the distributions of action

unit activations, on average, do not vary significantly in the early and latter stages of the

input. Therefore the problem outcome labels could be potentially predicted by training

models that observe only a fraction of the input without significantly sacrificing accuracy.

5.3 Baseline Models

The input to our baseline models consists of variable-length webcam videoclips of partici-

pants working on MathSpring problems. As stated earlier, the corresponding GoPro video

stream and MathSpring clickstream are not used in this work. A significant proportion

of the frames contain full frontal faces of the subject, representing times when they are

interacting with the ITS (i.e. reading the problem, thinking about the solution, answering

the question and interacting with the on-screen educational avatar). For the baseline mod-

els, frames where the frontal face of the subject could not be detected due to occlusion by

the hand or severe out-of-plane rotation of the head were discarded from the training and

testing procedures.

5.4 Feature Representation

For each frame of all the videos in the dataset, 18 AU presence and 17 AU intensity values,

along with head-pose and eye-gaze vectors, are extracted using OpenFace [8]. In order to

compute an aggregate feature representation, we used statistics (mean, standard deviation,
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min and max) for each feature as well as statistics for their derivatives to produce a uni-

form length 376-dimensional feature representation. The derivatives capture the change

in feature activations at each timestep. The mean, standard deviation, min and max are

representative summary statistics of the variable-length features and concisely capture the

distribution of values for each feature, which can be used by the classifier to distinguish

samples from different classes. For our experiments, we trained a multi-layer perceptron

with 2 hidden layers, each with 100 activation nodes, trained using Adam [64].

5.5 Experiments

For all our experiments, we trained and tested our models on 5 random, stratified 75/25

splits of the data.

We first trained a model for the multi-class effort prediction task. Our baseline model

achieves a mean accuracy of 0.54 and a mean F-score of 0.27 (Table 5.1). Given that our

dataset is severely imbalanced with more than half the samples corresponding to the ‘SOF’

label, the predictions of our model are heavily biased towards that label, as is evident in

the figure depicting the normalized confusion matrix (Figure 5.6).

One way to overcome the issue of data imbalance is to oversample the minority classes

before training our classifier. We do so using three over-sampling techninques: RAND

(Random), which randomly oversamples the under-represented classes with replacement,

SMOTE (Synthetic Minority Oversampling Technique) [19], which generates new sam-

ples by interpolating in feature space, and ADASYN (Adaptive Synthetic Sampling) [56],

which generates samples by interpolating next to original samples which are incorrectly

classified by a k-NN classifier. We find that a model trained using RAND and SMOTE

achieves slight improvement in classifier performance (Figure 5.7).
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Table 5.1: Multi-class effort prediction results

Multiclass Classification Problem Accuracy F-score
Effort 0.54 ± 0.01 0.27 ± 0.01

Figure 5.6: Confusion matrix for 7-class effort prediction
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Figure 5.7: Mean F-scores for multiclass classifiers trained with no oversampling (NOS),
and various resampling methods.

Figure 5.8: Mean F-scores for one-vs-all binary classifiers trained for different problem
outcome labels.
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5.5.1 Effort Prediction

Because oversampling does not yield significant model performance, we trained individ-

ual one-vs-all binary classifiers for all effort labels. A model capable of predicting each

of these indicators can help the ITS make decisions with regard to providing proactive

interventions. For example, a model that can successfully predict whether a student can

answer the question on the first attempt can prompt the ITS to prevent displaying unneces-

sary hints, or to increase difficulty levels of subsequent questions. Similarly, if the student

is predicted to require hints to solve the problem, the ITS can proactively offer a hint be-

fore the student asks for it. We find that models trained to predict SHINT, NOTR and SOF

yield the best results, indicating that facial affect signals displayed during problem-solving

corresponding to these labels are the most discriminative (Figure 5.8).

5.5.2 How long to make Accurate Predictions?

Ideally, an affect-sensitive model should be able to accurately predict the effort label of the

user as early as possible, in order to enable quick and effective interventions by the ITS.

Therefore, we test our classification models when only a fraction of the data is observed

during test time. In order to do so, we first train models on the first 1, 5, 10 and 30 seconds,

as well as the entire length of the input and test them on corresponding test conditions,

for both multiclass and binary classification settings. In Figures 5.9 and 5.10, we plot

the F-scores for the various problem outcome labels, as obtained by the models, when

predicting problem outcomes after observing 1 second, 5 seconds, 10 seconds, 30 seconds

as well as the entire length of the data instance, for the multiclass and binary classification

settings respectively. We can observe that model performance, expectedly, increases as

features computed from longer temporal sequences are available. Based on this dataset,

our baseline models are better at accurately predicting SHINT, NOTR and SOF compared
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Figure 5.9: Multi-class model performance for effort prediction when data is observed for
different time scales.

Figure 5.10: Performance of binary classification models for effort prediction when data
is observed for different time scales.



75

Figure 5.11: Performance of multiclass classifier (Mean accuracy 0.35) for effort predic-
tion of all classes except SOF when the first 30 seconds of data are observed.

to predicting ATT, GIVEUP, GUESS and SKIP.

5.5.3 Interventions

This model can be integrated into the ITS and its predictions can be used to provide more

proactive interventions. For example, if the SOF model of an ITS predicts that the user

will solve the problem at the first attempt, the ITS can suppress any interventions but

subsequently present problems that are more difficult and challenging. If the model pre-

dicts that the student will not solve the problem at first attempt, it can provide appropriate

interventions based on the confidence of the other effort label models.

In order to investigate which non-SOF classes get confused with one another, we
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trained a multiclass classification model (using the same random 75/25 splits as used in

the other experiments) to predict all problem outcome labels excluding SOF using only

the first 30 seconds of the input data. The normalized confusion matrix for this model is

plotted in Figure 5.11. We can see that the model is most confident in predicting SHINT,

NOTR and GUESS. Possible interventions that the ITS can provide, given a confident

prediction for SHINT and GUESS, are appropriate hints associated with the problem at

hand.

One label that the model is currently inept at predicting is GIVEUP, which can be

attributed to the paucity of examples corresponding to this label in the dataset. Given

additional examples associated with the behavior of giving up while solving problems and

an improved model capable of accurately forecasting this behavior, the ITS could intervene

with combinations of hints and encouraging messages to help the student.

5.6 Summary

In this chapter, we first described the process with which a novel dataset used in this study

was collected by our research collaborators and preprocessed to produce data instances

corresponding to a single problem. We provided an exploratory analysis of the different

problem outcome classes using average facial action unit activations and discussed a few

observed trends. We then investigated the problem of trying to directly predict the learning

outcome of students attempting to solve individual problems based on signals extracted

from their faces. We developed baseline models to predict the problem outcome labels

of students solving math problems, in both binary and multiclass classification settings.

We also investigated how early problem outcome labels can be forecasted and provided a

discussion of possible interventions that the ITS can provide.



Chapter 6

Hierarchical Bayesian Neural Networks

Building robust classifiers trained on data susceptible to group or subject-specific varia-

tions is a challenging pattern recognition problem. In this chapter, we develop hierarchical

Bayesian neural networks to capture group-specific variations and share statistical strength

across groups. Leveraging recent work on learning Bayesian neural networks, we build

fast, scalable algorithms for inferring the posterior distribution over all network weights

in the hierarchy. We also develop methods for adapting our model to new groups when

a small number of group-specific personalization data is available. Finally, we investi-

gate active learning algorithms for interactively labeling personalization data in resource-

constrained scenarios. A pictorial example of our hierarchical personalization framework

is illustrated in Figures 6.1 and 6.2.

6.1 Model

Given a dataset D = {xn, yn}Nn=1, containing N input xn ∈ RD, and label yn ∈ Y pairs,

we aim to learn the functional mapping from inputs to class labels and to make class

predictions for previously unseen inputs x∗. Further, we focus on the case where D is

generated by G distinct groups, where groups may represent individuals or pre-defined

clusters of data instances.

To preserve group-specific effects we endow each group with its own conditional dis-
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Figure 6.1: Given input examples produced by g groups, we train a classifier using a
hierarchical framework, where Wg is the set of group-specific weights parameterizing a
Bayesian neural network. The different shapes correspond to different input classes and
the different colors represent the groups who produced those examples.

…	  

Figure 6.2: Given few instances of training data from a new group, we personalize our
model to learn weights specific to the new group.
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tribution, allowing the input-label mapping to vary among groups. The conditional distri-

butions are parameterized via multi-layered feedforward neural networks, which enables

the model to capture potentially complex mappings between inputs and labels. Assuming

the distribution factorizes over data instances, we have,

p(y | W, z,x) =
N∏
n=1

G∏
g=1

p(yn | f(Wg, xn))
1[zn=g]. (6.1)

Here, zn is a G-dimensional categorical random variable indicating the group membership

of data instance n. We assume that the group indicators z = {zn}Nn=1 are observed during

training. During testing we are able to reason about the class label y∗ of a held-out feature

x∗ even when the corresponding group membership z∗ is unobserved. We wish to learn

W = {W1, . . . ,WG}, where Wg is the set of group-specific weights parameterizing a

neural network f whose hidden layers employ rectified linear activations and whose output

layer is constrained to be linear. We note here that the function f can be any differentiable

function.

We place factorized Gaussian priors onWg with independent group-specific variances

to model our prior assumption that each group’s functional mapping is an independently

corrupted version of a common latent mapping (parameterized byW0),

p(Wg | W0, τg) =
L∏
l=1

Vl−1∏
i=1

Vl∏
j=1

N (wgij,l | w0
ij,l, τ

−1
g ). (6.2)

We further place uninformative priors — zero mean Gaussians with a large fixed variance

τ−10 on the weight meansW0,

p(W0 | τ0) =
L∏
l=1

Vl−1∏
i=1

Vl∏
j=1

N (w0
ij,l | 0, τ−10 ). (6.3)
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Here, Vl denotes the number of units in layer l and l = 0 corresponds to the input layer.

The group specific variances τ−1g control the amount of deviation from the mean ex-

hibited by the group’s input-label mapping. Specifying them manually can be difficult and

authors in the past [135] have resorted to setting them via cross-validation. Although cross-

validation procedures can be effective for simpler models, they are untenable here. Such

a procedure would involve searching over G-dimensional continuous spaces, re-training

the model for each parameter candidate. Instead, we place hyper-priors on the variances

and infer them jointly with W. The Gamma distribution is the conjugate prior over the

precision of a Gaussian distribution and hence a popular choice [10]. However, recent

work [46] has shown it to be unsuitable for specifying uninformative priors in hierarchical

models. Following [46], we instead use the half-normal distribution with a large fixed

variance v to specify uninformative priors over group-specific standard deviations τ−1/2g ,

p(γg | v) = N (γg | 0, v); τ−1/2g = |γg|, (6.4)

where we have introduced an auxiliary variable γg and used the property, if a ∼ N (0, σ2),

then |a| ∼ Half-Normal(0, σ2). It also immediately follows that τ−1g = γ2g . In the next

section, we will see that the auxiliary variable formulation simplifies inference. Finally,

we model the observed class labels as categorically distributed random variables,

yn | W, xn, zn ∼ Cat(yn | S(f(Wzn , xn))), (6.5)

where S(a) = exp{a}/∑k exp{ak} is the softmax function that maps the real valued

output of f to the probability simplex. We can summarize the joint distribution specified
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Figure 6.3: Graphical model representation of our hierarchical Bayesian model. Shaded
nodes indicate observed random variables.

by the model as,

p(W0,W, T ,y | x, z, τ0, v) = p(W0 | τ−10 )

G∏
g=1

p(γg | v)p(Wg | W0, τ
−1
g )

N∏
n=1

G∏
g=1

p(yn | f(Wg, xn))
1[zn=g],

(6.6)

where T = {γ1, . . . , γG}. The hierarchical Bayesian neural network explicitly captures

inter-group variances by allowing the group-specific conditional distribution of data from

different groups to systematically vary from each other. At the same time, they share sta-

tistical strength across groups — samples observed for a particular group not only provide

information about that group’s distribution but also about other group-specific distribu-

tions. A graphical representation of the model is depicted in Figure 6.3.
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6.2 Scalable Learning and Inference

Learning our model involves inferring the posterior distribution p(W0,W, T | D, z, γ0, v)

over model parameters. Unfortunately, the nonlinear activations employed by the networks

in the hierarchy render this posterior intractable forcing us to resort to approximate infer-

ence techniques. Leveraging recent advances in scalable approximate Bayesian learning,

we use variational inference to learn a tractable approximation to the posterior. We restrict

the approximating family to the following form,

q(W0,W,T | φ) = q(W0|φ0)
G∏
g=1

q(Wg|φg)q(γg|φγg), (6.7)

where φ = {φ0, φ1, . . . , φG, φγ1 , . . . , φγG} represents the variational free parameters. We

approximate the weight posteriors with fully factorized Gaussian distributions,

q(W0|φ0) =
L∏
l=1

Vl−1∏
i=1

Vl∏
j=1

N (w0
ij,l | µ0

ij,l, ψ
0
ij,l),

q(Wg|φg) =
L∏
l=1

Vl−1∏
i=1

Vl∏
j=1

N (wgij,l | µgij,l, ψgij,l).
(6.8)

The auxiliary variable γg affects the model only through its absolute value |γg|. Thus, we

can also restrict the posterior of γg to q(γg|φγg) = N (γg | µγg , ψγg), a Gaussian family.

We optimize the variational parameters to minimize the Kullback-Leibler divergence

KL(q||p) between the true posterior and the variational approximation by maximizing the
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evidence lower bound (ELBO),

L(φ) = Eqφ [ln p(W0,W, T ,y | x, z, γ0, v)]− Eqφ [ln q(W0,W, T | φ)], (6.9)

with respect to the variational free parameters φ.

The non-conjugacy between the neural network parameterized categorical distribu-

tions and the Gaussian priors cause the expectations in the ELBO to be intractable. This

precludes the availability of traditional fixed point updates. Instead, following recent

work [115, 12, 66, 94], we approximate the intractable expectations with unbiased Monte-

Carlo estimates,

L̂(φ) = 1

S

S∑
s=1

ln p(Ws
0 ,Ws, T s,y | x, z, γ0, v)− Eqφ [ln q(W0,W, T | φ)],

Ws
0 ,Ws, T s ∼ q(W0,W, T | φ).

(6.10)

The gradient∇φL(φ) is then approximated with the noisy but unbiased estimate∇φL̂(φ).

Computing ∇φL̂(φ) requires gradients with respect to the means and variances of the

Gaussian variational approximations. The non-centered parameterization proposed in [66],

w ∼ N (µ, ψ) ⇔ ε ∼ N (0, 1), w = µ + ψ1/2ε, allows us to differentiate through the

Monte-Carlo approximation,

∇µ,σEqw [g(w)]⇔∇µ,ψEN (ε|0,1)[g(µ+ ψ1/2ε)]

=EN (ε|0,1)[∇µ,ψg(µ+ ψ1/2ε)]

=
1

S

∑
s

∇µ,ψg(µ+ ψ1/2εs); εs ∼ N (0, 1),

(6.11)



84

for any differentiable function g. With the unbiased gradient estimates in hand, Equa-

tion 6.9 can be optimized through stochastic gradient ascent [15].

6.3 Local Reparameterization

Although stochastic gradient ascent is guaranteed to asymptotically converge to a local

optimum, its non asymptotic performance is contingent on the variance of the unbiased

gradient estimates. While the gradient estimate in Equation 6.11 has been previously used

to learn Bayesian neural networks [12], we find the variance of this estimator too high to

effectively learn our hierarchical model.

To address this issue, we note that the weights in a layer only influence the ELBO

(L(φ)) through the layer’s pre-activations. Instead of estimating the ELBO by sampling

the variational posterior on the weights one could instead sample the implied variational

distribution on the considerably smaller number of pre-activations. This is the “local

reparameterization trick” introduced in [65], where the authors show that the correspond-

ing gradient estimates have provably lower variance. For factorized Gaussian variational

posteriors over weights, the corresponding pre-activation distributions are also easy-to-

compute factorized Gaussians. The pre-activation bil, of the ith node of layer l is dis-

tributed as N (µTwila, σ
2T

wil
a2), where a is the input to layer l, µwil and σ2

wil
are the means

and variances of the variational posterior over weights associated with node i.

We find that local reparameterization provides significant computational cost savings,

accuracy improvements and is crucial for effectively learning hierarchical Bayesian neural

networks.
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6.4 Predictions

Given a held-out input x∗ from an observed group z∗, the posterior predictive distribution

over classes is given by,

p(y∗ | x∗,D)

=

∫
p(y∗|W, z∗, x∗)p(W0,W, T | D)dW0dWdT

≈
∫
p(y∗ | W, z∗, x∗)q(Wz∗ | φ̂z∗)dWz∗ ,

(6.12)

where the approximation in the second line follows from the variational approximation

and φ̂z∗ denotes the optimal variational parameters. In our experiments, we evaluate the

integral using a Monte-Carlo estimate.

Next, we consider the case when group (z∗) and class (y∗) memberships are both unob-

served and need to be inferred. Classifying x∗ involves performing an additional inference

of its group membership. Since this inference needs to be performed at test time for each

data instance, it is imperative that the inference be fast. To facilitate fast and accurate

inference of the group memberships, we use an inference network [97, 48] hθ, another

multi-layered fully connected neural network with weights θ and a G dimensional soft-

max output layer. We learn this inference network by utilizing all examples from the

training set where z is observed. This inference network paramterizes the approximate

posterior q(z | x). Because z is observed during training, training of the group inference

network can occur independently of other variational parameters. At test time, inferring

a distribution over the unknown group memberships, q(z∗ | x∗, θ̂) = Cat(z∗ | hθ̂(x∗)),

simply involves a single forward pass through the network, where θ̂ denotes the estimated

weights. Our use of an inference network is in sharp contrast to traditional mean field
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methods where each datapoint is assigned an independent variational parameter that is op-

timized via several iterations of expensive optimization, at test time. In the presence of a

new group, we add an output node to the group inference network. However, we find that

only updating the weights associated with the new node is sufficient and the network need

not be re-trained.

Marginalizing over the joint posterior predictive distribution, we get the predictive

distribution over class labels:

p(y∗ | x∗,D) =
G∑

z∗=1

p(y∗, z∗ | x∗,D)

=
G∑

z∗=1

∫
p(y∗|W, z∗, x∗)p(W0,W, z∗, T | D)dW0dWdT

≈
G∑

z∗=1

q(z∗ | x∗, θ̂)
∫
p(y∗ | W, z∗, x∗)q(Wz∗ | φ̂z∗)dW.

(6.13)

The integral overW is estimated via a Monte-Carlo approximation, p(y∗ | x∗) ≈∑G
z∗=1 q(z∗ | x∗, θ̂) 1

T

∑
t p(y∗ | W t, z∗, x∗),W t ∼ q(W | φ̂z∗ , θ̂).

6.5 Personalization

In this section, we focus on incorporating data from a new, previously unseen group and

adapting the model to the new group. We call this process personalization and focus on

the cases when a small number of data instances from the new group are made available

for training. Denoting data instances from new group G + 1 as DG+1, we learn a group-

specific modelWG+1 | DG+1. The learning can be performed efficiently by observing that

{Wg}G+1
g=1 are conditionally independent givenW0. Thus, given a model trained on D, we

only updateWG+1 while keeping the estimates {Wg}Gg=1 | D andW0 | D fixed. We could
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additionally update the posteriors {Wg}Gg=1 | D ∪ DG+1 andW0 | D ∪ DG+1. However,

typically only a small number of adaptation instances DG+1 are available — too few to

have a sizeable effect on the posteriors {Wg}Gg=1 | D andW0 | D.

6.6 Active Learning

Collecting and labeling personalization inputs can be expensive. For example, consider

a system designed to recognize specialized gestures such as those made by naval aircraft

handlers onboard aircraft carriers. Not only is the process of collecting additional gestures

likely to be challenging, labeling the gestures requires specialized domain knowledge and

can be prohibitively expensive. To best utilize limited labeling resources, we next describe

an active learning procedure to guide the selection of data instances to label, given a small

pool of unlabeled adaptation examples.

Having access to the posterior distribution over weights, rather than just point esti-

mates, allows us to use Bayesian active learning by disagreement (BALD) — a state-of-

the-art active learning algorithm [58]. Given a pool of unlabeled inputs Xpool from group

g and a model trained on D, BALD sequentially selects inputs xl, such that,

xl = argmax
x∈Xpool

H[y | x,D]− EWg∼p(Wg |D)H[y | x,Wg], (6.14)

where H[t] = −
∫
p(t)log p(t)dt. As noted by Houlsby et al. [58], Eq. 6.14 lends itself

to an intuitive explanation: BALD seeks a data instance xl for which the model, aver-

aging over all weights, is uncertain about y (high H[y | x,D]) but individual settings of

the weights have high certainty in their predictions (low EWg∼p(Wg |D)H[y | x,Wg]) —

i.e., when the posterior weights disagree the most. Approximation methods to efficiently

evaluate Eq. 6.14 are available for certain classes of models, but do not extend to our
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multi-class classification problem. We therefore resort to a Monte-Carlo approach. We

empirically found that, even with a modest number of samples, the approximations signif-

icantly improve upon selecting data instances uniformly at random.

6.7 Hierarchical Bayesian Recurrent Neural Networks

The proposed hierarchical Bayesian framework is, in theory, agnostic to the neural archi-

tecture used to learn the input-output mapping. For input data of sequential nature, such

as gestures, where modeling temporal dynamics can be important, we extend the func-

tionality of this framework by adding support for recurrent neural architectures. For this

scenario, f can be defined to represent a recurrent neural network, e.g. a vanilla RNN of

the form:

hi = ReLU(wghhhi−1 + wgxhxi), (6.15)

f = S(wghyhT ), (6.16)

where,Wg = {wgxh, wghh, wghy} andwgxh, w
g
hh, w

g
hy represent the input-to-hidden, hidden-

to-hidden and hidden-to-output weight matrices respectively and hi represents the hidden

state at time i. The equations for the recurrent unit f can be replaced with those of more

complex recurrent units such as the Long Short Term Memory (LSTM) [47], or the Gated

Recurrent Unit (GRU) [22].

6.8 Summary

In this chapter, we developed hierarchical Bayesian neural networks for personalized mod-

eling of face and gesture signals in the presence of inter-group and inter-subject variations.
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We proposed a mechanism to utilize the inferred posterior to drive an active learning pro-

cedure for personalizing the model to new users. We also developed recurrent variants of

our hierarchical Bayesian model as an alternative for building personalized models involv-

ing sequential signals such as gestures.



Chapter 7

Applications of Hierarchical Bayesian Neural

Networks to Problems in Face and Gesture

Analysis

In this chapter, we apply the hierarchical Bayesian model introduced in Chapter 6 to ex-

plore whether the problems introduced in Chapters 3 (gesture recognition), 4 (expressivity

prediction) and 5 (learning outcome prediction) can benefit from personalization. Focus-

ing first on the problem of gesture recognition where inter-subject variations are com-

monplace, we demonstrate the effectiveness of our proposed techniques by testing our

framework on three widely used gesture recognition datasets.

We then adapt the hierarchical Bayesian neural network framework to enable the learn-

ing of facial expressivity model parameters that subtly adapt to pre-defined notions of

context, such as the gender of the patient or the valence of the expressed sentiment. We

present results based on evaluations of our formulation on a dataset of 772 20-second

video clips of Parkinson’s disease patients and demonstrate that training a context-specific

hierarchical Bayesian framework yields an improvement in model performance in both

multi-class classification and regression settings compared to the same model trained on

all data pooled together. Finally, we evaluate our hierarchical model on the problem of

personalized predictions of student outcomes.
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7.1 Subject-specific Gesture Recognition

Here, we extensively evaluate our hierarchical personalization framework on the problem

of subject-specific gesture recognition.

7.1.1 Datasets

We used three datasets to test our framework, all of which contain skeletal data of the

subjects performing the gestures. The MSRC-12 Kinect Gesture Dataset contains 12 dif-

ferent gestures performed by 30 different subjects for a total of ∼4900 gesture instances

(Figure 7.1 top left). The gestures were recorded using the Microsoft Kinect.

The 2013 Chalearn Gesture Challenge dataset contains examples of 20 gestures col-

lected from 36 different subjects. Like Yao et al. [135], we experimented with the Training

and Validation data containing ∼11000 samples. The gestures in the dataset, recorded us-

ing the Microsoft Kinect, represent common communication signals used in the Italian

language (Figure 7.1 top right).

The NATOPS dataset [105] consists of 24 unique aircraft handling signals performed

by 20 different subjects, where each gesture has been performed 20 times by all subjects

(Figure 7.1 bottom). A 12-dimensional vector of body features (angular joint velocities for

the right and left elbows and wrists), as well as an 8 dimensional vector of hand features

(probability values for hand shapes for the left and right hands) collected by Song et al.

[105] are provided as features for all frames of all videos in the dataset.

7.1.2 Experiments

For controlled comparisons with previous work [135], we used identical feature represen-

tations — raw x,y,z world coordinates for 20 body joints in the MSRC-12 and Chalearn

datasets. For NATOPS, we used the 20 dimensional features made available in [105],
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Figure 7.1: Examples of gestures from MSRC-12 dataset (top left), ChaLearn 2013 dataset
(top right) and the NATOPS dataset (bottom)
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per frame. We extracted frames by sampling uniformly in time and concatenated the per-

frame features to produce 600-dimensional input feature vectors for all three datasets. This

allowed us to use a common model architecture for the three different datasets. In our ex-

periments, we trained a Hierarchical Bayesian Neural Network with varying number of

hidden layers, each with 400 activation nodes. We set the hyper-parameters v to 100 and

τ−10 to 1000 and used RMSprop [114] to optimize the ELBO.

7.1.2.1 Benefits of Local Reparameterization

For all three datasets, on fifteen random 75-25 split of the data, we trained a Hierarchi-

cal Bayesian Neural Network for 100 epochs, with and without using local reparame-

terization. When not using local reparameterization, we approximated the ELBO using

20 Monte Carlo samples whereas when using local reparameterization, we only used 1

sample. We plot the mean logarithm of the ELBO versus the number of training epochs

(Figure 7.2) and observe that the ELBO curves for the model that employs local reparam-

eterization is much higher than the model that doesn’t, suggesting the model can learn a

better approximation of its parameters much faster.

To investigate the effectiveness of the locally re-parameterized ELBO gradients, we

trained an HBNN with 1, 2 and 3 hidden layers, each layer with 400 activation nodes,

for 100 epochs replicated over 15 random 75/25 splits of the ChaLearn dataset. Fig. 7.3

displays the ELBO evolution over the course of training with and without local reparam-

eterization (lprm). We found that for all three architectures, the models using locally

re-parameterized gradients made better progress, achieving higher expected lower bounds

with the gap in performance increasing with depth. This is not surprising, considering that

the dimensionality of the space spanned by the network weights increases more rapidly

than the dimensionality of the pre-activation space.
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Figure 7.2: The mean logarithm of the expected lower bound (ELBO) versus the number
of training epochs, for 15 random 75-25 splits of the data, when the model uses local
reparameterization (lprm) and when it doesn’t (no lrpm). For all three datasets, MSRC-12
(top left), ChaLearn 2013 (top right) and NATOPS (bottom), the model reaches a faster
convergence when using local reparameterization.
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Figure 7.3: The mean logarithm of the expected lower bound (ELBO) versus the number
of training epochs, for 15 random 75-25 splits of the ChaLearn dataset, when the model
uses local reparameterization (lprm) and when it doesn’t (no lrpm) for different HBNN
architectures: HBNN with one hidden layer (top left), HBNN with two hidden layers (top
right) and HBNN with three hidden layers (bottom).
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7.1.2.2 Gesture Recognition

Next, we demonstrate the flexibility afforded by parameterizing the group-specific condi-

tional distributions with Bayesian neural networks. For all datasets, we trained a HBNN

with two hidden layers with 400 units each and benchmarked against two strong base-

lines: a multinomial regression version of our hierarchical Bayesian framework (HBMR),

and a two hidden layer non-hierarchical Bayesian neural network that pools data from all

subjects into a single group. We trained all models for 50 epochs on 5 random 75/25

replications of the data. Figure 7.4 presents the corresponding results. First, focusing

on the case when subject memberships are known (HBNN-Known Z and HBMR-Known

Z), we found that the non-linear HBNN models significantly improved upon their linear

counterparts HBMR models across the three datasets. HBNNs also outperformed the non-

hierarchical Bayesian neural networks on all three datasets clearly demonstrating the ben-

efits of employing subject-specific models over pooled ones. Interestingly, HBMR only

outperformed the non-hierarchical Bayesian neural network on the MSRC dataset. This

suggests that compared to capturing complex non-linear relationships between gestures

and labels, modeling subject-specific idiosyncrasies is less important for the NATOPS

and Chalearn datasets. Further comparisons with existing gesture recognition systems are

available in the supplement.

Unknown Subject Memberships. We studied the effectiveness of our proposed sub-

ject membership inference network. When the membership of a test gesture is unknown

we compared two methods for predicting its class label — naive Bayesian model averaging

(HBNN-NBMA) where we uniformly averaged the posterior predictive distributions of all

subjects and, weighted Bayesian model averaging (HBNN-WBMA), where the weights

were determined by the subject membership inference network.

On the MSRC-12 and NATOPS datasets, we found that HBNN-WBMA significantly
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Figure 7.4: The mean F1-scores for different versions of our Hierarchical Bayesian ges-
ture classifier. For all three datasets (MSRC-12 dataset (top left) and Chalearn 2013 dataset
(top right) and NATOPS dataset (bottom)), we trained a Hierarchical Bayesian Multino-
mial Regression classifier (HBMR) and a Hierarchical Bayesian Neural Network (HBNN)
and used them to predict the class labels of the test data. For HBNN, when group mem-
bership of the test data is known, we used the weights belonging to the corresponding
group to make a prediction (HBNN (Known Z)). When group membership of the test data
is unknown, we present results obtained with Naive Bayesian Model Averaging (HBNN-
NBMA) and Weighted Bayesian Model Averaging (HBNN-WBMA). We compared our
results with a baseline BNN trained with data from all subjects pooled into one group,
whose mean is depicted in the figures as a dashed black line.
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outperformed HBNN-NBMA. On ChaLearn, both methods performed similarly but HBNN-

WBMA exhibited lower variance across splits. Together, these results demonstrate that the

use of a recognition network is helpful when subject-memberships are not known at test

time.

We note that apriori knowledge of the subject-membership of a gesture leads to better

predictive performance on all but the ChaLearn dataset. The ChaLearn dataset is more

challenging due to less rigidly defined gestures. This results in more variability in gestures

and weakens our assumption that each subject performs a given gesture consistently and

differently from other individuals. This may explain why knowing the subject member-

ships does not translate into significant performance improvements.

7.1.2.3 Personalization

We now present experiments demonstrating the personalization ability of HBNN models.

Given a limited number of training instances from the new subject, we learned model

parameters tuned to the subject. For all datasets, we used a leave-one-subject-out cross

validation scheme, where we personalized models pre-trained on G− 1 subjects and used

a pool of seven (fifteen for NATOPS) randomly selected gestures per class from the test

subject for personalization. Both pre-trained and personalized models contained two lay-

ers, with 400 units each, and were trained for 50 epochs. We considered two schemes for

incorporating gestures from the personalization pool: RAND, where data from the training

pool of the test subject was added uniformly at random, and BALD where data from the

training pool was selected using uncertainty-based sampling (Eq. 6.14). For each test sub-

ject, we repeated the experiment five times, randomly selecting the pool of personalization

gestures in each replicate.

We benchmarked these methods against a strong non-personalized baseline — a non-
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Figure 7.5: The mean F1-scores for different personalization schemes plotted against the
number of personalization instances per gesture. We observe that personalization using
BALD outperforms personalization using RAND when the number of personalization in-
stances is greater than 1 for the MSRC-12 dataset (top left), 3 for the ChaLearn 2013
dataset (top right) and 4 for the NATOPS dataset (bottom). Our results also compare fa-
vorably with the personalization methods presented by Yao et al. [135], who reported their
results for the MSRC-12 and ChaLearn 2013 datasets. We compare the personalization re-
sults with a baseline BNN trained with all training data pooled into one group, whose
mean is depicted in the figures as a dashed black line.
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hierarchical BNN (with two 400-unit hidden layers) trained with data from all subjects

except the test (personalization) subject pooled together. The results in Fig. 7.5 show

that with as few as two and three gesture examples per subject, HBNN outperformed the

baseline on MSRC and NATOPS. On ChaLearn, BALD with five gesture examples per

class performed as well as the non-personalized baseline.

It may be surprising to note that personalization baseline on ChaLearn (Figure 7.5)

resulted in higher F1 scores than the non-personalized baseline presented in Figure 7.4.

However, the baseline in Figure 7.4 corresponds to a model trained on samples from all

subjects but with the training set size limited to 75% while the model in Figure 7.5 was

trained on 35 out of 36 subjects corresponding to 97% of the dataset. For the ChaLearn

data intra-subject variability in gestures dwarfs inter-subject variations. Thus, observing

more of the dataset as opposed to gestures from the same subject leads to better perfor-

mance. This is also why HBNNs need more (4) personalization examples for ChaLearn

than the other datasets.

Comparing BALD with RAND, we found that BALD improves personalization per-

formance on all three datasets, when the number of training instances exceeded one, three

and four for MSRC, NATOPS and ChaLearn datasets. This is an interesting result which

suggests that even our naive mean field approximation provides predictive uncertainty

estimates of sufficient fidelity that lead to BALD’s uncertainty based sampling outper-

forming RAND’s uniform at random sampling. Moreover, our experiments suggest that

when labeling resources are limited, BALD based active learning is an attractive option for

building personalized classification systems. We do note that BALD and RAND perform

similarly when very few personalization instances are available. This may be due to the

uncertainty estimates being poor in the very few personalization instances regime.

We compared our approach to the existing state-of-the-art in gesture personalization
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[135] on MSRC and ChaLearn datasets (Figure 7.5). Yao et al. [135] presented three per-

sonalization methods: full personalization, which refers to fully re-training random forest

classifiers given personalization data, adaptive personalization, which refers to adapting

the parameters of pre-trained random forests given personalization data, and a portfolio ap-

proach, where a library of random forest classifiers are pre-trained and the best performing

portfolio member is used to classify data from a new subject. We observe that on MSRC,

both RAND and BALD outperformed all of the competing methods when the number of

personalization instances per gesture class is greater than two. On ChaLearn, BALD out-

performed portfolio and adaptive schemes and is within noise of full personalization after

observing five personalization instances.

7.1.2.4 Effects of Modifying Depth of Model

Given that the process of personalizing to a new subject usually entails the availability of

very few number of training instances, we study the effects of modifying depth on model

performance. For the Chalearn dataset, we used a leave-one-subject-out cross validation

scheme, where we personalized models pre-trained on G−1 subjects with a pool of 7 ran-

domly selected gestures per class from each test subject using HBNNs with 1 and 3 hidden

layers. We plot the mean F1-scores for different personalization schemes against the num-

ber of personalization instances per gesture for the different HBNN architectures (Figure

7.6). We observe that models personalized using BALD outperforms models personalized

using RAND for all architectures. The HBNN model with 1 hidden layer performs com-

parably to the best-performing HBNN with 2 hidden layers (Figure 7.5). However, the

HBNN model with 3 hidden layers performs worse due to overfitting.
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Figure 7.6: The mean F1-scores for different personalization schemes plotted against
number of personalization instances per gesture for different HBNN architectures for the
ChaLearn dataset: HBNN with one hidden layer (left), and HBNN with three hidden layers
(right).

7.1.2.5 Hierarchical Bayesian Recurrent Neural Networks

Instead of concatenating features from all timesteps and feeding it into a fully connected

architecture, we investigated the benefits of explicitly modeling temporal dynamics of the

input gestures by training hierarchical Bayesian recurrent neural networks (HBRNNs).

For each gesture dataset, we represented each input video with a 10 x 60-d feature repre-

sentation and fed it into an HBRNN framework, with the RNN architecture correspond-

ing to a GRU with a 100-dimensional hidden representation. For all three datasets, the

HBRNN model performed comparably (MSRC-12 and NATOPS) or obtained a boost in

performance (ChaLearn) (Figure 7.7) compared to the best performing fully connected

HBNN model from earlier experiments (Figure 7.4). This demonstrates the benefits of

using HBRNNs in modeling temporal signals such as gestures. In addition, we note that

the HBRNN framework achieves this performance at a fraction of the parameter cost.
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Figure 7.7: The mean F1-scores comparing feed-forward Hierarchical Bayesian Neural
Networks (HBNN) with Hierarchical Bayesian Recurrent Neural Networks (HBRNN),
for all three datasets (MSRC-12 dataset (top left) and Chalearn 2013 dataset (top right)
and NATOPS dataset (bottom)).
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7.2 Context-sensitive Facial Expressivity Prediction

Now, we switch the focus of our hierarchical personalization framework from individual-

specific gesture recognition to group-specific facial expressivity prediction of people with

Parkinson’s Disease (PD), where the groups are determined by factors such as gender or

the valence of the sentiment being expressed by the PD patient.

7.2.1 Context

We experiment with two notions of context: gender (male and female) and sentiment (pos-

itive and negative) expressed in the interview. We wish to investigate whether dividing the

dataset into context-sensitive groups and leveraging any variations inherent in the groups’

input-label mapping can yield improvements in model performance. For example, pre-

vious research has indicated people display varying levels of expressive behavior when

discussing positive experiences compared to when speaking about negative experiences

[109]. Utilizing a framework that is capable of learning related but slightly different func-

tions seems apt for such a scenario.

We assume we have access to context indicators, i.e. the subject’s gender and the

sentiment of the experience that the subject describes, for each video in both the training

and test sets. This allows us to separate the dataset into context-specific groups (Figure

7.8).

The hierarchical Bayesian neural network learns the context-sensitive group-specific

variances by allowing the group-specific conditional distribution of data from different

groups to vary from each other, while allowing the sharing of statistical strength across

groups.
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Figure 7.8: Overview of our multimodal context-sensitive expressivity prediction model.
From an input audio-video clip (a), we extract Facial Action Unit-based interpretable fea-
tures as well as Mel-Frequency Cepstral Coefficient Features (b). We train a context-
sensitive expressivity model by utilizing a hierarchical Bayesian neural network frame-
work (c). HereD1, ...,Dg represents our datasetD divided into g context-sensitive groups,
which we hypothesize to have subtly different input-label mappings. W1, ...,Wg represent
the group-specific weights that parameterize the mapping between the input and the ex-
pressivity ratings.
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7.2.2 Dataset

We used the same dataset of 772 audio-video clips of patient interviews as described in

Chapter 4. The ground truth expressivity labels yi ∈ R for each video was taken as the

average of 4 expert ratings. In our experiments, we evaluated both regression and classi-

fication formulations in predicting the expert ratings. For classification experiments, we

discretized the labels of the entire dataset into 4 classes. Classes 1, 2, 3 and 4 contain sam-

ples with facial expressivity ratings in the range [1, 2), [2, 3), [3, 4) and [4, 5] respectively.

7.2.3 Experiments

Here, we report results on experiments conducted to investigate the benefits of context-

sensitive modeling for facial expressivity prediction.

7.2.3.1 Context-sensitive Modeling

For each context indicator (gender and sentiment), we first divided the training data into

two groups (male and female for gender, positive and negative for sentiment). We trained

our framework using this multi-group paradigm with the combined audio-video feature

representation. During testing, we obtained the estimate of the expressivity rating of

the test sample using the classification or regression parameters associated with its cor-

responding context indicator.

Compared to a baseline model (HBNN-C-pooled), which ignored context and was

trained with the data from all groups pooled together (obtaining a mean F1-score of 0.50),

we found that retaining contextual information provided by gender (HBNN-C-gender)

yielded no empirical benefit in classifier performance (mean F1-score of 0.50). How-

ever, utilizing the context provided by sentiment (HBNN-C-sentiment) improved the per-

formance of the model in the multiclass classification settings (mean F1-score of 0.55)
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Figure 7.9: (Left) The mean F1-scores and their standard deviations for HBNN-C models
trained using context (gender, sentiment) or no context (pooled). (Right) The mean MAE
scores and their standard deviations for HBNN-R models trained using context (gender,
sentiment) or no context (pooled).
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Figure 7.10: The mean F1-scores for a model trained with feed-forward neural architec-
ture (HB-NN) and a recurrent neural architecture (HB-RNN) for multi-class expressivity
classification.
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(Figure 7.9). Similarly, the regression model that utilized context provided by sentiment

(HBNN-R-sentiment) yielded a slightly improved MAE score of 0.48, outperforming the

baseline model which obtained a mean MAE score of 0.49 (Figure 7.9). This suggests

that the input-label mappings in the sentiment-driven context-sensitive groups may con-

tain sufficient group-specific variance in order for the hierarchical framework to leverage

it into improved model performance.

7.2.3.2 Modeling Temporal Dynamics

Although facial expressivity is coded as a “gestalt” score, we wished to explore whether

preserving the temporal order and dynamics in the feature representations leads to any

classification benefits. To answer this question, we represented each input video with a

10 x 300-d feature representation and fed it into a Hierarchical Bayesian Recurrent Neural

Network (HBRNN) framework. However, we found no empirical benefit of explicitly

modeling temporal dynamics as the mean F1-scores achieved by HBRNNs do not exceed

the ones obtained using their non-recurrent counterparts (Figure 7.10).

We posit that because raters label expressivity as a summary score of the entire video,

modeling the temporal order of events do not matter as much in this scenario. The chal-

lenges of training recurrent models on relatively small datasets, such as this, may be an

additional reason why the HBRNN model fails to outperform the HBNN model in the task

of facial expressivity prediction.

7.3 Student-specific learning outcome prediction

Finally we apply the hierarchical personalization framework to the problem of student-

specific learning outcome prediction. Students may vary significantly in how they display

their emotional states during learning, while engaged with and reacting to the ITS. We,



109

Figure 7.11: The mean F1-scores and their standard deviations for an HBNN model trained
with all data pooled together and a student-specific HBNN model.

therefore, wish to explore whether there are any benefits of learning slightly different

mappings to the learning outcome label for each individual student, as opposed to learning

a generic classification function for all students pooled together.

7.3.1 Dataset

We used the same dataset of 1596 problem outcome video-clips of students engaged with

MathSpring. Each input video is represented by the same action unit-based summary

statistic feature descriptor, as described in Chapter 5.

7.3.2 Experiments

Here, we report results on experiments conducted to investigate the benefits of student-

specific modeling for learning outcome prediction. We trained and tested all our models

on 5 random, stratified 75/25 splits of the data. All HBNN models had 1 hidden layer

with a 100 activation nodes and were trained for the SOF-vs-all binary classification task,
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as this was the only binary classification task where all students had examples for both

classes.

Compared to a baseline model (HBNN-pooled), which was trained with the data from

all 30 students pooled together (obtaining a mean F1-score of 0.61), we found that training

a student-specific model did not bring any improvement in classifier performance (mean

F1-score of 0.59).

The lack of improvement, we posit, can be attributed to a few reasons. First, some

individuals do not possess a sufficient number of training examples. Moreover, for many

students, their examples are highly imbalanced across the 2 classes (e.g. some students

have solved almost all problems on first attempt). Second, the underlying assumption

in our personalization framework that between-group variance is high and within-group

variance is low, is not as strong as in the gesture recognition problem.

7.3.3 Summary

In this chapter, we first extensively evaluated the hierarchical Bayesian neural network

model, introduced in Chapter 6, to the problem of personalized gesture recognition system.

We illustrated the benefits of the hierarchical model over baselines that ignore subject-

specific gesture variations and demonstrated the scalability of the model’s capacity to learn

complex feature-label mappings. We used the inferred posterior distributions over weights

to guide active learning procedures for personalizing pre-trained models to new users. Our

posterior driven active learning algorithm consistently outperformed selecting gestures at

random as well as outperforming or being competitive with existing methods. We then

extended the framework to support recurrent architectures, demonstrating their benefits in

modeling gestures.

Second, we illustrated the benefits of using a framework that adapts to contextual in-
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formation. Our hierarchical Bayesian model trained on a dataset divided according to

the sentiment expressed in the interviews outperformed a baseline model that ignored this

contextual information in both classification and regression scenarios. We then used the

HBRNN framework to model temporal dynamics in expressivity prediction but found no

empirical benefits compared to results obtained using fully-connected feed-forward archi-

tectures trained on aggregated features.

Third, we investigated whether there are any benefits of learning slightly different map-

pings from the raw video input to the learning outcome label for each individual student,

as opposed to learning a generic classification function for all students pooled together but

found no empirical benefits



Chapter 8

Conclusions and Future Work

In this thesis, we focused on the following challenges within face and gesture analysis: a)

the classification of hand and body gestures along with the temporal localization of their

occurrence in a continuous stream, b) the recognition of facial expressivity levels in people

with Parkinson’s Disease using multimodal feature representations, c) the prediction of

student learning outcomes in intelligent tutoring systems using affect signals, and d) the

personalization of models that can adapt to subject and group-specific nuances in facial

and gestural behavior.

8.1 Contributions

Here, we summarize the major contributions of this thesis:

• We presented an analysis of methods for gesture spotting and classification by com-

paring two methods. The first method trains a single random forest model to recog-

nize gestures from a given vocabulary, as presented in a training dataset of video plus

3D body joint locations, as well as out-of-vocabulary (non-gesture) instances. The

second method employs a cascaded approach, training a binary random forest model

to distinguish gestures from background and a multi-class random forest model to

classify segmented gestures. Given a test input video stream, both frameworks are
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applied using sliding windows at multiple temporal scales. We evaluated our formu-

lation in segmenting and recognizing gestures on two different benchmark datasets:

the NATOPS dataset of 9600 gesture instances from a vocabulary of 24 aircraft han-

dling signals, and the ChaLearn dataset of 7754 gesture instances from a vocabulary

of 20 Italian communication gestures. The performance of our method compares

favorably with state-of-the-art methods that employ Hidden Markov Models or Hid-

den Conditional Random Fields on the NATOPS dataset.

• We investigated how to computationally predict an accurate and objective score for

facial expressivity in people with Parkinson’s Disease. We first presented a base-

line method that trains a random forest regressor based on geometric shape features

of the face. We provided insight on the geometric features that are important in

this prediction task by computing variable importance scores for our features. We

then build improved models on more informative facial action unit-based features,

providing interpretations based on their aggregated feature importance. We demon-

strated the utility of extracting features from not only the visual domain but also the

audio in order to accurately predict facial expressivity, finding that a model trained

on a combined audio-visual feature representation outperformed models trained on

features extracted from a single modality. We evaluated our formulation on a dataset

of 772 20-second interview video clips of PD patients using 9-fold cross validation.

• We described the process with which a novel multimodal dataset used in this study

was collected and annotated, with the aim of fulfilling an existing gap in affective

tutoring systems literature: a benchmark, publicly available facial affect dataset in

an educational setting. We provided an exploratory analysis of the different prob-

lem outcome classes using average facial action unit activations, discussing some

interesting observed trends. Based on this novel dataset, we then developed baseline
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models to predict the problem outcome labels of students solving math problems,

demonstrating its effectiveness in accurately forecasting several problem outcome

labels.

• We developed hierarchical Bayesian neural networks for personalized modeling of

face and gesture signals in the presence of inter-group and inter-subject variations.

Leveraging recent work on learning Bayesian neural networks, we built variational

inference-based fast, scalable algorithms for inferring the posterior distribution over

all network weights in the hierarchy. We also developed methods for adapting our

model to new groups when a small number of group-specific personalization data is

available. We proposed to utilize active learning algorithms for interactively labeling

personalization data in resource-constrained scenarios. We also implemented recur-

rent variants of our hierarchical Bayesian model, given their suitability in building

models involving sequential signals.

• We applied our hierarchical Bayesian framework to three tasks: subject-specific ges-

ture recognition, context-specific facial expressivity prediction and student-specific

learning outcome prediction.

First, we illustrated the benefits of the hierarchical model over baselines that ignore

subject-specific gesture variations and demonstrated the scalability of the model?s

capacity to learn complex feature-label mappings, testing our framework on three

widely used gesture recognition datasets. We used the inferred posterior distribu-

tions over weights to guide active learning procedures for personalizing pre-trained

models to new users, showing that our posterior driven active learning algorithm

consistently outperformed selecting gestures at random. We demonstrated the suit-

ability of applying hierarchical Bayesian recurrent neural networks in the gesture

recognition task, achieving comparable or improved model performance at a frac-
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tion of the parameter cost.

Second, we illustrated the benefits of using a framework that adapts to contextual

information, regarding the task of facial expressivity prediction. Our hierarchical

Bayesian model trained on a dataset divided according to the sentiment expressed in

the interviews outperformed baseline models that ignored this contextual informa-

tion in both classification and regression scenarios.

Third, we applied our personalization framework to the problem of student-specific

problem outcome prediction. However, unlike in subject-specific gesture recogni-

tion and context-specific expressivity prediction, we did not find empirical benefits

of using our personalization framework over a generic classifier.

8.2 Strengths, Limitations and Future Research Directions

Here, we discuss the strengths of the methods we have proposed and address their weak-

nesses, suggesting ideas for research directions that could further improve our work.

8.2.1 Gesture Spotting and Recognition

We presented an analysis of methods for gesture spotting and classification by comparing

a framework that employs a single multi-class random forest classification model to dis-

tinguish gestures from a given vocabulary in a continuous video stream with a framework

that uses a cascaded approach. The strengths of the two methods we proposed lie in their

simplicity to train and their capacity to generalize well to variations in user size, distance

to the sensor, and speeds at which the gestures are performed, as well as our methods’ ro-

bustness to the effects of sensor noise. One area of the framework that can be improved is

the process of selecting and creating better feature sets. Many additional features, such as

joint-pair distances used by Yao et al.[134], can be experimented with in order to improve
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the accuracy of our framework. Additionally, selecting a small group of features over an

interval of frames to split a node in a decision tree, instead of selecting a single feature at

a single frame, might be better suited to the purpose of learning complex spatio-temporal

objects such as gestures. However, computing more features may hamper the random

forest framework’s speed during test time.

In gesture recognition, there are often ambiguities between similar gesture pairs in

both datasets, which our random forest classifier cannot differentiate well. A potential

idea for further exploration is to use another layer of tree-forest classifiers to identify

the features that can differentiate the ambiguities in order to further refine classification

results. In general, gesture classification can be performed in a hierarchical framework,

where random forests at the top-most level will accurately separate a dynamically-defined

set of super-classes, each of which will be subject to further classification by classifiers at

subsequent layers, until all classes are well-separated.

Moreover, feature engineering approaches have generally been replaced by feature

learning approaches across many large-scale computer vision tasks, including gesture

recognition. Novel neural network architectures based on CNNs, LSTMs, 3D-CNNs and

their unique combinations learn discriminative feature representations directly from input

skeletal, RGB and depth data and have been shown to obtain good results on numerous

gesture recognition benchmark datasets [83, 92, 80, 71]. For example, Neverova et al.

[83] presented a gesture localization and recognition scheme based on a multimodal deep

learning architecture that leverages audio signals to take advantage of the fact that gestures

are often accompanied by speech or sounds.

Another drawback of our current approach lies in the use of a sliding window mech-

anism. Exhaustive, multi-scale sliding window search is not very computationally effi-

cient and cannot predict flexible gesture boundaries. Workarounds to sliding window ap-
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proaches have been proposed in the object detection [50, 57] and activity detection [128]

literature. However, these approaches rely on the entire input (e.g. the complete input

image or complete input video) being available to the algorithm during test time. In real-

time gesture recognition applications, where the model must be able to respond with its

prediction in real-time, sliding window approaches are still appropriate.

We should also note that deep learning approaches are not always suitable for ges-

ture recognition applications. For one, gesture recognition applications often require low

latency computations in resource-constrained devices, e.g. real-time gesture recognition

in AR/VR settings, where only a fraction of the on-device computation resources can be

devoted to real-time gesture recognition. Second, gesture recognition systems are often

designed for specific applications, where data collection and annotation in a scale required

for most deep learning methods can be prohibitively expensive.

8.2.2 Predicting Active Facial Expressivity in People with Parkinson’s Disease

We presented an interpretable system that computes facial expressivity scores in people

with Parkinson’s Disease using multimodal audio-visual feature descriptors extracted from

a video sequence. Automated assessment of facial expressivity in Parkinson’s Disease

patients has the potential to be a useful tool for clinicians in this field. Human coders have

successfully coded facial expression in people with PD [54] but the costs associated with

the manual assessment of all patients with PD can be prohibitively high. Comprehensive

manual coding of 20 seconds of video can take upwards of an hour, and often two coders

are needed to establish that the human coder is reliable. Most existing works in the domain

of computational facial analysis of PD patients are limited to small-scale pilot studies

comparing the characteristics and dynamics of facial expressions exhibited by a small

group of PD patients against those of a separate control group. By utilizing a dataset of
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772 short audio-video clips of 117 PD patients along with their facial expressivity labels,

we demonstrated the feasibility of using a machine learning model in predicting the facial

expressivity ratings of new audio-video clips.

A potential weakness of our current approach lies in the simplicity of our feature repre-

sentation. Although summary statistics-based feature representations, such as the ones we

have used, provide concise, easy-to-interpret features that was appropriate for our applica-

tion, we forego a significant amount of signal from the raw input, which could potentially

prove useful for more complex classification/regression frameworks. However, utilizing

larger, complex models is challenging, given the relatively small size of our dataset (con-

sisting of less than 700 training samples).

Considering that PD is widespread and affects millions of people around the world,

the benefits of an accurate, interpretable and automated facial analysis for patients are

beyond doubt. One avenue for further research is to extend this work on a larger scale.

However, obtaining real patient data on a large scale can be a challenge. An interesting

research question to ask then is: can the vast amounts of audio-video interview data widely

and freely available in the Internet be leveraged to learn better facial expressivity models?

With some expenses for expert annotation, one could train deep, multimodal models on

the large, non-PD data and finetune them on the smaller target dataset of PD patients.

Given that the distribution of the source domain of interview clips might differ from that

of the target domain of interview clips of PD patients, domain adaptation methods might

be useful [117].

8.2.3 Affect-driven Learning Outcomes Prediction in Intelligent Tutoring Systems

We investigated the problem of trying to predict the learning outcome of students from fa-

cial affect signals, based on a novel dataset of student videos interacting with MathSpring,
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a popular web-based ITS. The dataset was collected with the intention of releasing it as a

benchmark affect dataset in an educational setting, the likes of which are currently missing

in the literature. Based on this novel dataset, we developed models to directly predict the

learning outcomes of the students from concise action unit-based feature representations

that capture the facial affect dynamics of the input video. This is different from most ex-

isting work that maps the input video into the student’s emotional state, such as happiness,

anger and level of engagement.

While the results we provided are that of baseline models, there are several avenues for

improvement. First, we have so far ignored two rich streams of information while building

our predictive models: the GoPro video stream that captures the students’ faces when

they are facing down and therefore not visible in the webcam, and the mouse-coordinate

clickstream which can often be very informative about the students’ internal state. A multi-

modal model that utilizes signals from all streams will probably result in better predictive

performance.

Despite the relatively large size of the raw dataset, the problem outcome labels are quite

sparse. It is therefore challenging to build accurate models that map very high dimensional,

highly variable spatio-temporal affect signals into a single problem outcome label using

only a few examples. Moreover, the raw input signals are mostly dominated by non-

informative neutral facial expressions. Obtaining denser labels around times of high facial

activity could help provide an improved understanding of the relationship between facial

affective signals and the final problem outcome.

Finally, the biggest challenge in ATSs is to then utilize these affect-sensitive models

to provide appropriate and effective interventions that quantifiably improve the learning

experience. There have been some recent works that have ventured in this direction. For

example, Gordon et al. [51] combined the valence and engagement values inferred from
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facial affect of students and inputted them into a social robot’s reinforcement learning

algorithm, which allowed the social robot tutor to personalize its motivational strategies

according to the observed facial affect of students. In future work, our research team plans

to provide personalized interventions in MathSpring based on the proposed affect analysis

models, and then conduct experiments to validate the effectiveness of the interventions, as

well as analyze affect signals that result after the interventions are applied.

8.2.4 Hierarchical Bayesian Neural Networks and Applications

Group-specific variations in data can pose a significant challenge to building robust and

reliable classifiers. We developed hierarchical Bayesian neural networks for personalized

modeling of face and gesture signals in the presence of inter-group and inter-subject vari-

ations. When group-membership labels are available, we showed that they can be lever-

aged to build group-specific models within a hierarchical framework. We demonstrated

the utility of this hierarchical approach to three tasks: subject-specific gesture recogni-

tion, context-specific facial expressivity prediction and student-specific learning outcome

prediction.

One drawback of this hierarchical framework is that it relies on group-membership

labels being available during training. When group-membership labels are missing or

corrupt and we have no prior knowledge regarding the number of groups that generated

our data, is it possible to infer the group-membership labels directly from the data along

with the rest of the model parameters? For example, such a mechanism would allow the

model to automatically determine contextual clusters in the training data in the absence of

pre-defined context labels.

One possible idea to meet this goal is by extending the current hierarchical Bayesian

neural network formulation. By placing a Dirichlet Process (DP) prior on the random
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variables, which indicate the group membership label of a data instance, and learning its

parameters, we can learn an effective grouping of the training data [3]. DP mixtures are

a popular Bayesian nonparametric model used for clustering problems where the number

of clusters need not be specified beforehand. Xue et al. [130] introduced a model similar

to ours for the multi-task learning scenario in order to identify subgroups of related tasks.

They showed their method worked better than baseline individual per-task models as well

as a single model trained with data from all tasks. Recent advances in variational inference

algorithms [11] for DP mixtures as an alternative to the more expensive MCMC-based

methods point to the possibility of adding this extension to our current framework.

Another shortcoming of this framework is its size, in terms of the total number of

model parameters, and time taken to optimize the models relative to comparable non-

Bayesian counterparts. This makes scaling this framework to massive, modern end-to-end

frameworks particularly challenging. A potential workaround would be to design hybrid

networks: convolutional networks for feature learning that are shared across groups and

combined with personalized hierarchical Bayesian fully connected or recurrent hierarchi-

cal Bayesian networks.

Other extensions to this framework would be to utilize it on personalization challenges

in other domains. For example, an interesting application would be to build such systems

that can personalize to various devices. Consider, for example, a future smart-home setting

where the user interacts with an AI system through speech, emotions and gestures via

various devices. A personalized multimodal framework could learn efficient recognition

systems for each different device medium.
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Guyon, Vassilis Athitsos, and Hugo Escalante. Multi-modal gesture recognition
challenge 2013: Dataset and results. In Proceedings of the 15th ACM on Interna-
tional conference on multimodal interaction, pages 445–452. ACM, 2013.

[41] Beat Fasel and Juergen Luettin. Automatic facial expression analysis: A survey.
Pattern Recognition, 36(1):259–275, 2003.

[42] Jenny Rose Finkel and Christopher D Manning. Hierarchical Bayesian domain
adaptation. In Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pages 602–610. Association for Computational Linguistics, 2009.

[43] Simon Fothergill, Helena Mentis, Pushmeet Kohli, and Sebastian Nowozin. In-
structing people for training gestural interactive systems. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 1737–1746.
ACM, 2012.



126

[44] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning
with image data. In International Conference on Machine Learning, pages 1183–
1192, 2017.

[45] Juergen Gall, Angela Yao, Nima Razavi, Luc Van Gool, and Victor Lempitsky.
Hough forests for object detection, tracking, and action recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 33(11):2188–2202, 2011.

[46] Andrew Gelman and Jennifer Hill. Data Analysis Using Regression and Multi-
level/Hierarchical models. Cambridge University Press, 2006.

[47] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-
tinual prediction with LSTM. 1999.

[48] Samuel J Gershman and Noah D Goodman. Amortized inference in probabilistic
reasoning. In Proceedings of the 36th Annual Conference of the Cognitive Science
Society, 2014.

[49] Malay Ghosh, Tapabrata Maiti, Dalho Kim, Sounak Chakraborty, and Ashutosh
Tewari. Hierarchical Bayesian neural networks: an application to a prostate cancer
study. Journal of the American Statistical Association, 99(467):601–608, 2004.

[50] Ross Girshick. Fast R-CNN. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1440–1448, 2015.

[51] Goren Gordon, Samuel Spaulding, Jacqueline Kory Westlund, Jin Joo Lee, Luke
Plummer, Marayna Martinez, Madhurima Das, and Cynthia Breazeal. Affective
personalization of a social robot tutor for children’s second language skills. In
AAAI, pages 3951–3957, 2016.

[52] Joseph Grafsgaard, Joseph B Wiggins, Kristy Elizabeth Boyer, Eric N Wiebe, and
James Lester. Automatically recognizing facial expression: Predicting engagement
and frustration. In Educational Data Mining 2013, 2013.

[53] Joseph F Grafsgaard, Seung Y Lee, Bradford W Mott, Kristy Elizabeth Boyer,
and James C Lester. Modeling self-efficacy across age groups with automatically
tracked facial expression. In International Conference on Artificial Intelligence in
Education, pages 582–585. Springer, 2015.

[54] Sarah D Gunnery, Elena N Naumova, Marie Saint-Hilaire, and Linda Tickle-
Degnen. Mapping spontaneous facial expression in people with Parkinson’s dis-
ease: a multiple case study design. Cogent Psychology, page 1376425, 2017.

[55] Danita Hartley and Antonija Mitrovic. Supporting learning by opening the student
model. In International Conference on Intelligent Tutoring Systems, pages 453–
462. Springer, 2002.



127

[56] Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive syn-
thetic sampling approach for imbalanced learning. In Neural Networks, 2008.
IJCNN 2008.(IEEE World Congress on Computational Intelligence). IEEE Inter-
national Joint Conference on, pages 1322–1328. IEEE, 2008.

[57] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.
In Computer Vision (ICCV), 2017 IEEE International Conference on, pages 2980–
2988. IEEE, 2017.

[58] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian
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