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ABSTRACT

In real-time gesture recognition algorithms, accurately classifying
gestures early, when they are only partially observed, can be ad-
vantageous as it minimizes latency and improves user experience.
This work investigates a novel approach for improving the results
of an early gesture classification model. The method involves aug-
menting the input sequence of human poses of a partially observed
gesture with a series of poses predicted by an auxiliary recurrent
neural network sequence-to-sequence motion prediction model
before being fed into a random forest gesture classifier. By con-
catenating the partially observed ground truth sequence with the
forecasted motion sequence, we are able to significantly improve
early gesture recognition accuracy. When forecasting 25 future
frames of a partially observed input gesture sequence of 50 frames,
recognition accuracy improves from 45% to 87% on average when
evaluated on the MSRC-12 gesture dataset.

CCS CONCEPTS

+ Human-centered computing — Interaction paradigms; «
Computing methodologies — Machine learning;

KEYWORDS

gesture recognition, early prediction

ACM Reference Format:

Rohit Agrawal, Ajjen Joshi, and Margrit Betke. 2018. Enabling Early Gesture
Recognition by Motion Augmentation. In PETRA ’18: The 11th PErvasive
Technologies Related to Assistive Environments Conference, June 26—29, 2018,
Corfu, Greece. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3197768.3197788

1 INTRODUCTION

The problem of recognizing human gestures is well-studied in the
computer vision and machine learning research communities, with
a broad scope of applications spanning human-computer interac-
tion and motion synthesis for virtual and augmented reality. In
applications that require real-time recognition of gestures, it is
advantageous to accurately predict gestures as early as possible.
Consider, for example, a rehabilitative gaming application where
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patients control the flow of the game with therapeutic gestures.
Predicting a gesture when it is only partially observed instead of
waiting for the gesture to be fully completed can decrease latency
and therefore improve user comfort and experience.

Gesture recognition systems using a variety of machine learn-
ing based methods, such as nearest-neighbor based dynamic time
warping (DTW) distances [9], hidden Markov models (HMM) [16],
hidden conditional random fields (HCRF) [15], random forests [7]
and recurrent neural networks (RNN) [5] have been proposed. A
comprehensive survey of gesture recognition can be found else-
where [2, 11]. Many modern gesture recognition systems rely on
3D skeletal data as input. Devices such as the Microsoft Kinect [14]
have had a revolutionary impact on gesture-based HCI applications
as they enabled the modeling of human motion based on accurate,
low-dimensional skeletal pose features.

Related to the problem of recognition of human gestures and
activities is that of the forecasting of human motion. Given a se-
quence of human skeleton poses, the task in motion forecasting
is to predict a sequence of future poses conditioned on the input.
This is a non-trivial problem as human motion is stochastic and ex-
hibits non-linear dynamics. Following the impressive performance
of deep learning methods in a wide spectra of problems in com-
puter vision [13], recent work has focused on using deep recurrent
neural networks (RNNs) to model human motion. Martinez et al.
[10] trained a sequence-to-sequence Gated Recurrent Unit (GRU)
network and achieved state-of-the-art short-term motion prediction
results on the Human 3.6M dataset. Butepage et al. [4] employed an
encoder-decoder architecture to predict future 3D poses, thereby
learning a robust feature representation of human skeletal data.

Our focus is on building systems that can perform early gesture
recognition. That is, we would like to build classifiers that can
accurately predict labels of input gestures even when they are only
partially observed. Solutions to the problem of early action and
gesture recognition have been proposed previously [8, 12]. However,
applying models trained on fully-observed sequences to partially
observed gestures at test time does not always yield particularly
encouraging results.

Here, we propose a framework for performing early gesture
recognition. Instead of simply classifying partially observed ges-
tures, we leverage recent work utilizing deep recurrent neural net-
works to forecast short-term human motion. We input a partially-
observed gesture represented by a series of poses to a sequence-
to-sequence motion forecasting model, which predicts a sequence
of short-term future poses. This sequence of forecasted poses is
concatenated with the partially-observed ground truth gesture and
fed to a random forest gesture classification model. We show that
augmenting the partially-observed gesture with the output from
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Figure 1: Pipeline view of our gesture recognition by motion augmentation model. The input sequence is first fed to a sequence-
to-sequence model, which outputs a series of predicted poses. The combination of the ground truth input sequence and the
predicted poses is then classified by a random forest classification model.

our sequence-to-sequence model significantly improves recognition
accuracy during test time.

2 SYSTEM OVERVIEW

We here explain the components of our gesture recognition by
motion augmentation model in detail. A pipeline view of the frame-
work is illustrated in Figure 1.

2.1 Input

The input to our system consists of concatenated 3D pose descrip-
tors. Human motion recorded with devices such as the Kinect is
decoded into a concise skeletal descriptor. Each pose, which rep-
resents the configuration of the human skeleton in a single frame,
is defined by a 60-dimensional vector constituting the x,y,z coordi-
nates of 20 different body joints. These per-frame pose descriptors
are concatenated to form a gesture descriptor. During training, ges-
ture descriptors are computed from the entire gesture and are used
to train the classification model. During testing, we assume the
gesture is only partially observed. Therefore, the remaining poses
are first inferred by the motion prediction model before being fed
into the trained classifier.

2.2 Motion Prediction

For motion prediction, we utilize the sequence-to-sequence model
developed by Martinez et al. [10]. The authors demonstrated the
advantages of using a generic (as opposed to action-specific) GRU
network based on a sampling-based loss. As in [10], a sequence of
GRUs with 1024 units is used to map an input sequence of poses
to an output sequence. GRUs are preferred as a computationally
less-expensive alternative to LSTMs. The sequence-to-sequence
model can be viewed as consisting of: (1) an encoder which receives
the inputs and generates a robust internal representation, and (2) a
decoder which receives the internal representation and produces a
maximum likelihood estimate of subsequent poses for prediction.

The network is trained to minimize the Root Mean Squared Error
(RMSE) prediction error over the forecasted frames.

2.3 Motion Augmentation

The sequence of poses forecasted by the sequence-to-sequence
model is concatenated with the partially observed input gesture
before being fed to the gesture recognition model. The intuition
behind the idea of motion augmentation is simple. Because the ges-
ture recognition model is trained on fully observed gestures during
the training phase, it cannot be expected to produce accurate predic-
tions when given only a fraction of the full gestures. This is because
the model might have learned to discriminate between different
gestures in the training vocabulary by utilizing dynamics during
the latter part of the gesture. We posit that this can be alleviated if
a separate model is trained to peek into the future and provide a
reasonable representation of the future motion conditioned on the
partially observable input during the testing phase.

2.4 Gesture Recognition using Random Forests

The training set is defined as D = ((X1,y1), ..., (Xn,yn)) of pairs of
gesture feature descriptors and their corresponding gesture labels.
A random forest model [3] consists of an ensemble of decision trees,
each of which is trained using a separate subset of the training data
in order to maximize generalizability. In a decision tree, split points
are chosen at internal nodes by finding the attribute and the value
of that attribute that results in the lowest cost. At each internal node
of the tree, m features are randomly selected from the available d,
where d is the dimensionality of the feature vector of the inputs,
such that m < d. From the random selection of features, the feature
that most reduces the cost function, such as Information Gain or
the Gini index, is chosen to split the tree. We train our random
forest model with feature descriptors of the fully observed gestures
in the training set. During testing, we compare the performance
of this model when provided with feature descriptors of partially
observed gestures with and without motion augmentation.
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Figure 2: Example of gestures from the MSRC-12 dataset,
which consists of gestures for playing a shooting game.

3 DATASET

We used the Microsoft Research Cambridge-12 (MSRC-12) [6] Kinect
gesture dataset to evaluate our system. The dataset consists of se-
quences of 12 different human gestures (Figure 2) that could be
used while playing a shooting game along with the corresponding
gesture labels. The gestures are performed by 30 different subjects
for a total of ~ 6000 gesture instances, encompassing more than
~ 700000 frames, approximately six hours and forty minutes. The
gestures are represented in motion files that contain tracks of the
world positions of twenty body joints estimated using the Kinect’s
pose estimation algorithm. The body poses are captured at a sam-
ple rate of 30Hz with an error of up to two centimeters in joint
positions.

4 EXPERIMENTAL RESULTS

In all our experiments, we used the same network configuration
using a single gated recurrent unit (GRU) with 1024 units as pre-
sented by Martinez et al. [10]. We changed the learning rate from
the initial value of 0.005 to 0.01 by continuing to use the same batch
size of sixteen samples. During training, we fed the network a total
of fifty frames, which is equivalent to 1.67 seconds of motion, to
the encoder and predicted the next frame in the sequence, which is
equivalent to 33.33 milliseconds of motion. A generalized network
was trained for all different gestures using the above configuration.
The whole architecture was implemented in Tensorflow [1] on a
grid of three NVIDIA Titan GPUs.

4.1 Motion Prediction

We evaluated the performance of our motion prediction model
using the RMSE metric which measures the Euclidean distance
between the ground truth and prediction in pose space. In order to
compute the RMSE for a particular gesture, we computed the sum
of Euclidean distances between each of the consecutively predicted
frames and their corresponding ground truth frames and normal-
ized it over the total number of body joints and the total number of
frames.
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Table 1: RMSE For different gestures at different temporal
horizons of motion prediction. (fr. stands for frames.)

Gesture Name 1fr. 5fr. | 25fr. | 50 fr. | 100 fr.
Beat Both Arms | 0.0194 | 0.0201 | 0.0516 | 0.0790 | 0.1208
Bow 0.0141 | 0.0150 | 0.0456 | 0.0952 | 0.0800
Change Weapon | 0.0220 | 0.0244 | 0.0557 | 0.0695 | 0.1104
Duck 0.0198 | 0.0218 | 0.0363 | 0.0531 | 0.1077
Goggles 0.0353 | 0.0764 | 0.0635 | 0.0456 | 0.0459
Had Enough 0.0161 | 0.0183 | 0.0298 | 0.0491 | 0.0905
Kick 0.0257 | 0.0239 | 0.0452 | 0.0863 | 0.2545

Push Right 0.0141 | 0.0169 | 0.0418 | 0.0902 | 0.1247
Shoot 0.0277 | 0.0308 | 0.0677 | 0.0983 | 0.0795
Start System 0.0475 | 0.0676 | 0.0799 | 0.0783 | 0.0698
Throw 0.0239 | 0.0288 | 0.0858 | 0.0960 | 0.1893
Wind It Up 0.0176 | 0.0190 | 0.0411 | 0.0660 | 0.1004

In Table 1, we list the RMSE errors separately for each gesture in
the dataset when forecasted at different temporal horizons. On aver-
age, given an initial 50 frames as input, the network is most accurate
in forecasting the subsequent pose for the gestures “Bow" and “Push
Right!" The RMSE error expectedly increases as the network is asked
to forecast motions over a longer temporal horizon. While produc-
ing an additional 100 future poses when given a ground truth of a
sequence of 50 frames, the network is most accurate in predicting
future poses for the gestures “Goggles" and “Start System."

4.2 Gesture Recognition

Our gesture recognition model consists of a Random Forest classifier
with fifty trees trained to a max depth of five hundred, which gives
an optimal classification rate on this dataset. The Gini Index is used
as our cost function for node-splitting.

We experimented with two paradigms of motion prediction. First,
we assumed that the gesture prediction model has access to only
the first fifty frames of the test gesture. The motion predictor model
takes fifty frames as input and predicts the next frame in the se-
quence. In order to predict subsequent future frames, successive
early frames were dropped from the sequence after each iteration
while adding the predicted frame from the previous iteration. This
accounted for the new incoming frames predicted by the motion
predictor by sliding this fixed sized window of fifty frames.

In the second setting, we used the same setup with the only
exception of iteratively feeding the ground truth poses itself instead
of the obtained forecasted poses for predicting successive frames
while sliding the fixed sized window. The motivation behind this
online setting was the fact that the ground truth pose itself becomes
available as we progress through the gesture and capture more data
frames from the user performing the gesture.

When the classifier is fed only the first 50 frames of the test
gesture, the average classification accuracy is a mere 45%. However,
when the partially observed gesture is augmented with an additional
25 frames, classification accuracy improves to 87% (as depicted
by the orange curve in Figure 3 Left). The classification accuracy
continues to increase, when the input gesture is augmented with
more frames from the sequence-to-sequence model, peaking at
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Figure 3: Left - Classifier accuracy plotted against additional frames received as input comparing performance for ground-
truth-based predictions vs forecasting-based predictions. Right - Classifier accuracy comparisons based on different percent-
ages of ground truth & augmented predictions (#Total Frames = 150). The orange columns demonstrate the effect of augment-

ing the input with the forecasted frames.

93% after augmenting hundred successive predictions. When the
model is incrementally fed with the ground truth instead of its own
predictions, we expectedly observe better maximal performance in
the classification accuracy. In this setting, the average classification
accuracy approaches 99%.

We also quantified when this method of motion augmentation
is most beneficial to the classifier. When only a third of the ges-
ture (50 frames) is observed, the benefit of augmenting the input
with forecasted motion is significant as seen in the disparity in
classification accuracy (first column in Figure 3 Right). The model
achieves 93% accuracy when fed with an additional 100 forecasted
frames. In the absence of the forecasted frames, the model only
achieves a 45% accuracy. As more of the gesture is observed, the
advantage of augmenting future motion wanes. After more than
seventy percent of the input gesture is observed, the benefits of
motion augmentation to classifier performance is negligible.

5 CONCLUSIONS

In this paper, we proposed a framework for performing early ges-
ture recognition. A partially-observed gesture represented by a
series of poses was inputted to a sequence-to-sequence motion fore-
casting model, which produced a sequence of predicted poses. This
sequence of forecasted poses was concatenated with the partially-
observed ground truth gesture and fed to a random forest gesture
classification model. We showed that augmenting the partially-
observed gesture with the output from our sequence-to-sequence
model significantly improved recognition accuracy. This can be
attributed to the additional signal provided by the pose estimates
of the motion forecasting model, which improves the discrimina-
tive capacity of the classification model. In experiments with the
MSRC-12 gesture recognition dataset, we observed that gesture
classification accuracy increased from 45% to 87%, when a partially
observed gesture of 50 frames was augmented with an additional
25 frames of predicted motion and to 93% when augmented with
100 frames of predicted motion.
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