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A RANDOM FOREST APPROACH TO SEGMENTING AND

CLASSIFYING GESTURES

AJJEN JOSHI

ABSTRACT

This thesis investigates a gesture segmentation and recognition scheme that employs

a random forest classification model. A complete gesture recognition system should

localize and classify each gesture from a given gesture vocabulary, within a continuous

video stream. Thus, the system must determine the start and end points of each gesture

in time, as well as accurately recognize the class label of each gesture. We propose a

unified approach that performs the tasks of temporal segmentation and classification

simultaneously. Our method trains a random forest classification model to recognize

gestures from a given vocabulary, as presented in a training dataset of video plus 3D

body joint locations, as well as out-of-vocabulary (non-gesture) instances. Given an

input video stream, our trained model is applied to candidate gestures using sliding

windows at multiple temporal scales. The class label with the highest classifier confidence

is selected, and its corresponding scale is used to determine the segmentation boundaries

in time. We evaluated our formulation in segmenting and recognizing gestures from two

different benchmark datasets: the NATOPS dataset of 9,600 gesture instances from a

vocabulary of 24 aircraft handling signals, and the CHALEARN dataset of 7,754 gesture

instances from a vocabulary of 20 Italian communication gestures. The performance

of our method compares favorably with state-of-the-art methods that employ Hidden

Markov Models or Hidden Conditional Random Fields on the NATOPS dataset. We

conclude with a discussion of the advantages of using our model.
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Chapter 1

Introduction

The problem of spotting and recognizing meaningful gestures has been an important

research endeavor in the fields of computer vision and pattern recognition. Research in

this domain has a broad scope of applications such as recognizing sign-language symbols,

enabling video surveillance, establishing new idioms in gaming and entertainment, and

developing new modes of human-computer interaction, among others.

A specific example of a gesture recognition application can be explored in the setting

of a flight deck of an aircraft carrier. Deck officers use a vocabulary of gestures to

communicate commands such as “All clear,” “Move ahead,” “Turn left/right,” “Slow

down” etc. to aircraft pilots (Figure 1.1). However, the advent of unmanned air vehicles

(UAV) has engendered the need to create a system capable of communicating the same

set of commands to these unmanned aircrafts. Equipping a UAV with a computer vision

system capable of accurately and automatically recognizing the existing set of gestures

while they are being performed by deck officers would provide the most efficient solution

to this problem, as it would permit the continued operation of the current method of

communication.
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Figure 1.1: Deck officer onboard an aircraft carrier performing a NATOPS gesture
to direct a navy aircraft pilot

Another example of an application in gesture recognition lies in the domain of under-

standing the context provided by communication gestures. Human beings communicate

with words as well as gestures. A computer vision system capable of deciphering the

gestures used in specific languages, such as Italian, can provide contextual information

that aids the task of translating a foreign language.

Accurate segmentation and recognition of temporal events, such as speech and gesture,

has long been an active field of research in computer vision and machine learning [2],

[3], [4], [5], [6], [7], [8], [9], [10], [11]. Gestures have always been an important

part of human-to-human communication and are increasingly becoming an essential

mode of interaction between humans and computers. Human gestures typically involve

articulated movement of a number of body parts in order to convey a particular message.

Technology that facilitates efficient recognition of natural human gestures can bridge the

divide that exists between human-human interaction and human-computer interaction.

For example, an application that requires communicating with a robot might require

gesture recognition. Using gestures makes the task of conveying commands to a robot

natural and intuitive, and prevents the need for a user to learn a more esoteric mode of
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Figure 1.2: Pipeline view of gesture spotting framework

Figure 1.3: Pipeline view of gesture classification framework

communication. A computer-vision approach to recognizing these gestures would require

the robot to first recognize the human, track features associated with the gesture being

performed while determining when the gesture starts and ends, and correctly classify

the gesture.

A computer-vision system must first spot the gesture (Figure 1.2) in order for it to

classify the gesture (Figure 1.3). In other words, it is important that the start and end

points of a gesture be accurately identified in a temporal stream, in order to maximize the

probability of correctly estimating the gesture label. A common approach in solving the

segmentation and classification problem involves separating them into two-subproblems

where the task of segmentation precedes the task of recognition (Figure 1.4). In this

method, the focus is on first finding the gesture segmentation boundaries in time. The

candidate gestures produced by the segmentation algorithm is then classified. One of

the limitations of this approach is the dependence of classification on segmentation: a

good gesture classification algorithm will fail to yield desirable results if the segmenta-

tion algorithm is inaccurate. Another disadvantage of this method is the difficulty in
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Figure 1.4: Pipeline view of framework where gesture segmentation is followed by
classification

Figure 1.5: Pipeline view of framework where gesture segmentation and classification
is performed simultaneously

distinguishing contiguously occuring gestures. That is, the task of segmentation is easy

when gestures are separated by intervals of gestural silence (the absence of movement).

However, many real world problems involve continuous gesturing, when a gesture is

quickly followed by another, or when a gesture transitions into another. Another issue

that makes the task of segmentation difficult is the presence of gestures that are not

part of the vocabulary of the system.

Ours is a unified approach that simultaneosly performs the tasks of segmentation and

classification (Figure 1.5). In methods such as ours, gesture intervals for which above-

threshold scores are given by the classifier are deemed to be the labeled and segmented

gesture. Thus, we attempt to design a framework capable of automatically and accu-

rately spotting and classifying gestures present in a set of test videos, given a training

set of multi-modal videos with multiple examples of all gestures in a gesture vocabulary.
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We take a random forest approach to creating a fast and accurate classifier. Random

forests are an example of an ensemble method, where multiple classifiers engage in a

voting strategy to provide the final prediction. An example of an ensemble is a forest of

decision trees, where each tree casts a vote, and the predicted label corresponds to the

class with the most number of votes. Decision trees are predictive models that are used

for regression as well as classification problems. The structure of decision trees depends

on the observations provided while building the tree. A measure is defined in order to

generate branches based on some features of the observations. The leaves of a tree store

class labels, which correspond to the path of branches from the root to the leaf.

While creating a tree ensemble, the designer of the classifier must formulate a method

to choose the samples used to build the tree, as well as select features to create the best

split on an internal node. In a random forest, each tree is built from an independently

and randomly sampled subset of available observations. That is, a random sample of the

training set is chosen with replacement, and used to build a decision tree. At each node

of a tree, a fixed-size random subset of features is chosen out of all available features,

and the feature on this subset that best separates the data is selected to split the node.

Additionally, the trees are not subject to pruning, i.e. each tree grows to the largest

extent possible. During classification, a new object is classified by all decision trees of

the forest, and the forest outputs the class label that receives the maximum number of

votes.

Random forest models perform well in many classification tasks, work efficiently on large

datasets, and are very fast. Random forests have been applied to good effect in real-time

human pose recognition [12], object segmentation [13], and image classification [14]
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among others. Decision forests models have also been used variedly in action recognition

tasks [10], [15], [16]. Many works dealing with spatiotemporal signals, such as gestures,

employ graphical models such as Conditional Random Fields (CRFs) [17], [11], [1]

and Hidden Markov Models (HMMs) [18], [19], [5] in order to model relationships and

variations in both the temporal and spatial domains. It can be argued that long-range

temporal dependencies that gesture signals exhibit, which can be captured in graphical

models, are difficult to store in random forest models. However, we show that taking a

random forest approach in gesture classification tasks can be beneficial because they are

often simpler to implement and easier to train than graphical models, while providing a

comparable (and in some cases, better) accuracy in recognition.

1.1 Overview of Formulation

Given a dataset consisting of examples of gestures from a given vocabulary we first

train a classification model. Because the datasets which we have worked on have been

recorded with 3D sensors such as the Microsoft Kinect, each frame in the dataset videos

contain RGB as well as skeletal information. That is, gesture examples are contained in

RGB videos, which are accompanied by corresponding depth videos, and user segmented

videos. Moreover, skeleton information for the user in each frame of all videos of the

dataset is also provided. While testing, the model must accurately discern the start and

end points of a gesture from a continuous video stream, and correctly classify the class

label. The model must also be able to generalize well to variations in the user (size,

gender, distance to camera) and the environment (background, lighting).
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Figure 1.6: Overview of Formulation

While training a random forest model, we need to first collect features that provide

a good description of the gestures. We compute both joint-based features (such as

positional and angular velocities of important joints) as well as image-based features,

such as Histograms of Oriented Gradients (HOG), and Histograms of Optical Flow

(HOF). Thus, each frame of every video example in the dataset is numerically described

by a vector of joint-based and image-based features.

During training, we use the temporal segmentation information that is available to

produce a uniform description for every gesture example. Each gesture is described by

the feature vectors corresponding to each frame from its start point to its end point.

In order to create a feature descriptor of uniform length for each gesture example, we
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compress the feature representation into a single, combined feature vector. We achieve

this by first smoothing all features using a moving average filter, dividing the gesture

into 10 equi-length temporal segments, and representing each temporal segment with

a vector of the median elements of all features. The representative vectors of each

temporal segment is then concatenated into a single feature vector. This ensures that

all gestures are described by a feature vector of the same dimension, despite the fact

that most gestures are of varying length.

We use numerous examples of gestures in the vocabulary, as well as examples of intervals

that do not contain gestures in the system vocabulary, to train our random forest model.

Thus, our classification model is trained to recognize not only the gestures that are part

of the vocabulary, but also intervals of gestural silence and gestures that are out-of-

vocabulary.

During testing, we use a multi-scale sliding window approach to spot and classify ges-

tures. That is, given an input video, we compute features in a similar way as was done

during training, at different temporal scales. That is, feature descriptions of candidate

gestures are computed for different gesture lengths beginning at the start of the slid-

ing window. Each of these gesture candidates are classified by our previously trained

random forest model, and the gesture candidate most confidently classified is chosen

to be our predicted value. The temporal scale at which the candidate is chosen helps

determine the segmentation of the gesture. Thus the sliding window is moved so that

its starting position coincides with the end of the classified gesture (or non-gesture) and

the process is repeated until we reach the end of the input video.

We choose to use a direct classification method over temporal state-space models such as
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HMMs and HCRFs. A direct classification approach, such as the random forest classifier

used by Nowozin et al. [20] in the online detection and recognition of action points,

treats the gesture segmentation and recognition problem as a classification problem on

a sequence of frames. We employ a single multi-class random forest classification model

in our framework. Using a single classifier capable of effectively recognizing all gestures

from the vocabulary as well as distinguishing intervals that do not contain gestures

prevents the necessity of separately training and combining multiple classifiers such as

support vector machines (SVM) [21]. In order to account for the variability in the length

of different gestures in the dataset, our framework divides gestures into a fixed number

of equal-sized temporal segments, computes a representative feature vector for each

segment and concatenates them to create a uniform feature descriptor. This allows our

system to accurately classify gestures of arbitrary length unlike methods which attempt

to perform classification by operating on a fixed number of frames [22]. Our system

also fuses joint-based features with image-based features computed at every frame. This

choice distinguishes our system from methods that use a bag-of-features representation

[21] to construct uniform-length feature descriptors for spatio-temporal objects such as

actions and gestures.

1.2 Statement of Problem

We assume that the input to our gesture segmentation and classification framework

consists of a training set of videos that contain multiple examples of all gestures in the

vocabulary along with their corresponding temporal segmentation and class labels. We
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also assume the availability of multi-modal (RGB, depth, skeleton) data from which

features can be extracted and fused.

Given a set of multi-modal videos with multiple examples of all gestures in a gesture

vocabulary, the problem we aim to solve is to design a framework that is capable of

automatically and accurately spotting and classifying gestures present in a set of test

videos.

1.3 Contributions

The key contributions of this thesis are:

• the design of a simple framework that employs a single multi-class random forest

classification model to distinguish gestures from a given vocabulary in a continuous

video stream,

• the fusion of joint-based and image-based features to create an accurate feature

representation of gestures that is robust to variations in user height, distance of

user to sensor and speed of execution of gesture, and

• the creation of a uniform feature descriptor for gestures to account for the variabil-

ity in their length by division of gesture into a fixed number of temporal segments

followed by the concatenation of the representative feature vectors of each temporal

segment.
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1.4 Overview of Thesis

In Chapter 1, “Introduction,” we have presented the problem that is being solved and

provided examples of real-world applications of gesture recognition. We have provided

a summary of the formulation used in our solution, and have given a description of the

outline of the thesis.

Chapter 2, “Related Work” presents research work related to the problem of gesture

segmentation and recognition, with a focus on those works that are relevant to our

formulation. In this chapter, similar approaches to the problem are grouped, and their

strengths and weaknesses are analyzed.

Chapter 3, “Decision Trees and Forests” provides a detailed mathematical description

of the construction of decision trees and decision forests, and describes some of the

problems in which they have been used. It explains the advantages and disadvantages

of using a single decision tree, and why ensembles of randomized decision trees perform

better in many tasks.

Chapter 4, “Formulation” explains the details of our formulation. It describes the pro-

cesses of feature extraction, gesture representation, as well as, the procedures involved

in training the random forest classifier. It then provides a description of how the trained

classifier simultaneosly segments and classifies gestures from a continuous video stream

during test time.

In Chapter 5, “Datasets” we describe the two datasets on which we have tested our

methods. The datasets include: (a) the NATOPS dataset of 9,600 gesture instances
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from a vocabulary of 24 aircraft handling signals, and (b) the CHALEARN dataset of

7754 gesture instances from a vocabulary of 20 Italian communication gestures.

In Chapter 6, “Implementation Details,” specifications of our code in Matlab and Python

are provided. Our experimental setups are described. In this chapter, the evaluation

methods and metrics used to measure the performance of our system are reported, and

the reasons for their choosing are explained.

Chapter 7, “Experimental Results” elucidates the results of our experiments on the

various datasets with the help of figures and tables. In this chapter, we provide evidence

of the experiments conducted in deciding the optimal parameters of our system, as well

as compare our results with the work of others on the same or similar datasets.

Finally, in Chapter 8, “Conclusion and Future Work,” we conclude with a discussion of

the strengths and weaknesses of our methodology, and explore various possibilities that

might yield an improvement in our system.



Chapter 2

Related Work

Spotting and classifying human gestures is an important research endeavor in the fields of

computer vision and pattern recognition, and there is an extensive literature explaining

the multitude of approaches taken in solving many variants of this problem. Research

in this domain has a broad scope of applications ranging from recognizing sign-language

symbols [23], [24], [25] to developing new modes of human-computer interaction [26],

[27], [28]. Here, we list and briefly explain some of the important methods that have

been used in practice and are relevant to our work. A more comprehensive survey of

gesture recognition techniques can be found elsewhere [29], [7].

2.1 Gesture Spotting

Although our methodology consists of a combined approach to segmenting and classify-

ing gestures, there are methods which decouple them into separate problems: first spot

the gesture from a continuous stream, and then classify the candidate gesture. Alon et

al. [30] used continuous Dynamic Programming with pruning, using Dynamic Time

Warping (DTW) distances to find input segments that best match a gesture. Junker

et al. [8] used the sliding window and bottom-up algorithm introduced by Keogh et

al. [3] to find candidate gesture segments. Yang et al. [31] used a cascade connection
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of gesture Hidden Markov Models (HMMs) and a gesture transition HMM, in order to

model gestures as well as non-gestural movements that often occur when transitioning

from one gesture to another. Zhu et al. [4] used motion differencing between frames

of isolated hands, and outputted a sequence of frames in which the measurement of

the motion satisfies certain constraints as candidate hand gestures. Kang et al. [32]

generated candidate gesture segments using the following set of constraints: abnormal

velocity in the temporal domain, or the presence of a static gesture or high curvature

values in the spatial domain. Oka et al. [2] enumerated several spotting schemes for

continuous data such as speech and gesture. Betke et al. [33] used a system of two

buffers to store input spatio-temporal patterns and processed them to create pattern

segments in a fixed-size bounding box, which was then classified by a neural network

classifier.

Many of the listed gesture spotting methods work by detecting abrupt changes in motion

features. One of the disadvantages of such methods is the difficulty in detecting gestures

that occur without non-gestural intervals, that is when one gesture immediately suc-

ceeds another without the presence of an interval of gestural silence. Another difficulty

associated with this model is its propensity to detect a lot of out-of-vocabulary gestures.

Methods that simultaneously perform segmentation and classification determine gesture

boundaries by finding intervals within a continuous stream which receive high classifi-

cation scores from the classifier. In the rest of this section, we briefly summarize some

of the popular methods used for gesture classification:



15

2.2 Nearest Neighbor Models

A k-nearest neighbor (k-NN) approach has been widely implemented in the task of

classifying gestures. A nearest neighbor classification algorithm classifies input points

based on its proximity with training examples in feature space according to some distance

measure. It is a type of instance-based learning algorithm where computation is deferred

until classification, and is one of the simplest machine learning algorithms. In k-NN,

an input point is assigned to the class most common among its k nearest neighbors.

Malassiotis et al. [34] used a k-NN classifier to classify static sign language hand

gestures. A normalized cross-correlation measure was used to compare the feature vector

of an input image with those in the k-NN model. Dynamic Time Warping (DTW)

distance is another example of a distance measure, which can be used to compute a

matching score between two temporal sequences, a variant of which was used by Alon

et al. [6]. We employ a k-NN algorithm using DTW distances to create a baseline

score while analyzing one of the datasets. K-NN methods are attractive because of their

simplicity, but it is often difficult to define distance measures that clearly demarcate

different classes of time series observations.

2.3 Hidden Markov Models

A Hidden Markov Model (HMM) is another popular tool in temporal pattern recognition,

having been implemented in applications of speech recognition, handwriting recognition,

as well as gesture recognition. It is a statistical Markov model. In an HMM, there are a

number of states and a transition matrix that describes transitions between the states.

An observation is made when a system is in a state. In an HMM, the state is not visible;
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only a sequence of observations and the output defined by the state is visible. While

using HMMs for gesture recognition, the assumption that a first-order Markov finite

state machine generates a gesture sequence is made. After the HMM has been trained,

the most likely state sequence given the observation can be inferred. Chen et al. [5]

provided a good example of the use of HMM in the hand-gesture recognition problem.

They combined spatial and temporal features in order to represent each gesture by a

feature vector, which served as parameters for the HMM. After the HMMs have been

trained using training data from all input gestures, the gesture to be recognized was

separately scored against all trained HMMs, the model with the highest score indicating

the predicted gesture. In another example, Starner et al. [23] employed an HMM-based

system to recognize American Sign Language symbols. One difficulty while implementing

HMMs is to determine an appropriate number of hidden states, which can be domain-

dependent.

2.4 Hidden Conditional Random Fields

Conditional Random Fields (CRF), introduced by Lafferty et al. [35] is a discrimina-

tive graphical model with an advantage over generative models, such as HMMs: they do

not assume that observations are independent given the values of the hidden variables.

Hidden Conditional Random Fields (HCRF) use hidden variables to model the latent

structure of the input signals by defining a joint distribution over the class label and

hidden state labels conditioned on the observations [36]. HCRFs can model the depen-

dence between each state and the entire observation sequence, unlike HMMs, which only

capture the dependencies between each state and its corresponding observation. Song et
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al. used a Gaussian temporal-smoothing HCRF [17] to classify gestures that combine

both body and hand signals. They also presented continuous Latent Dynamic CRFs

[11] to classify unsegmented gestures from a continuous input stream of gestures. They

added a set of non-linear gate functions to the standard feature function of HCRFs [37]

in order to help automatically learn a discriminative feature representation.

2.5 Decision Tree and Forest models

Decision forests have been applied in a variety of ways in problems related with classi-

fying gestures. Miranda et al. [38] used a gesture recognition scheme based on decision

forests, where each node in a tree in the forest represented a keypose, and the leaves

of the trees represented gestures corresponding to the sequence of keyposes that consti-

tute the gesture as one traverses down a tree from root to leaf. Gall et al. [10] used

Hough forests, which are an adaptation of random forests, to perform action recognition.

In Hough forests, a set of randomized trees are trained to perform a mapping from a

densely-sampled d-dimensional feature space into corresponding votes in Hough space.

Yu et al. [15] utilized random forests to model the distribution of Space-Time Interest

Points (STIPs) of different action types. During testing, each individual point matched

the query class to generate a score for each action type. Choi et al. [39] employed a

random forest structure to randomly sample variable volume spatiotemporal regions in

order to select the best attributes for classification.

Reddy et al. [40] used a Sphere/Rectangle-tree to generate a feature-tree that used

spatiotemporal features. During classification, each feature is classified into a gesture

category and the final prediction is based on a voting mechanism. Demirdjian et al.
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[9] proposed the use of temporal random forests in order to recognize temporal events.

Temporal random forests consist of temporal decision trees whose nodes contain tempo-

ral information. Each node in a temporal decision tree uses the output of a filter (such

as the mean or the slope) applied to a feature variable over a randomly chosen time

window of some specific length in order to split the node.

2.6 Feature Engineering

Creating a good feature representation is essential in any recognition task. Histograms

of Oriented Gradients [41] features have been widely used to describe objects in high-

performance object detectors. Similarly, Dalal et al. [42] introduced oriented histograms

of optical flow as motion descriptors to supplement appearance descriptors such as HOG

to further improve detection in problems involving motion of the subject. An example of

the application of HOG-HOF features was given by Konecny et.al. [43]. They utilized

a descriptor that combines HOG and HOG features for the task of One-Shot-Learning

Gesture Recognition on the 2012 ChaLearn Gesture Challenge [44]. Laptev et al. [45]

described Space Time Interest Points (STIPS), which are used to compactly represent

spatio-temporal events.

Gesture recognition tasks have been aided with the advent of 3D cameras that are

capable of capturing depth information from a scene, and skeleton detection algorithms

capable of detecting joint locations and angles of a user with great accuracy. The

Microsoft Kinect is the most popular example of such a system. An infrared light

emitter emits a non-uniform array of IR rays onto the scene, the reflections of which are

detected by the depth camera sensor. Using the principle of structured light, the depth
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information of the scene can be inferred [46]. An early technique demonstrating this

principle was formulated by Zhang et al. [47], which inferred the geometric shape of an

object from a 2D image of the object under color-striped illumination. Thus, descriptors

such as the angular velocity, acceleration and curvature of joints can be used to replace

or supplement the aforementioned image-based descriptors. The task of tracking users

performing the gestures or body parts such as hands and fingers has also been aided.

In systems devoid of depth cameras, color, shape or appearance models are trained to

recognize the presence of humans in a sequence of images in order to track them.

2.7 Summary

Segmenting human gestures from a continuous video stream and accurately classifying

them is a difficult problem in computer vision. This chapter described some of the

existing and historically popular methods used to segment and classify human gestures,

with examples of their usage. It briefly explained some feature representations that

have been used to describe gestures, and how the increasing popularity of depth sensors

has helped solve some of the tasks associated with the problem of gesture spotting and

recognition.



Chapter 3

Decision Trees and Forests

3.1 Decision Trees

Decision tree classifiers have been used in many supervised-learning tasks [48]. A

decision tree is a collection of nodes and edges arranged in a tree-like structure. Splits

occur on internal nodes, whereas class labels are stored in the terminal nodes known

as leaves. Given a training set S of data points and their corresponding labels, trees

are built to optimize a certain function, which involves choosing parameters that best

splits the data at an internal node. One metric which measures the degree of split is

called information gain. Information gain (I) is usually used for multiclass classification

problems, and can be defined as:

Ij = H(Sj)−
∑

kε(L,R)

|Sk
j |
|S| H(Skj )

where Sj is the set of training points at node j, H(Sj) is the Shannon entropy at node

j before the split, and SLj and SRj are the sets of points at the right child and left child

respectively of the parent node j after the split.

That is, information gain measures the difference in the Shannon entropy H(S) before

and after a split. The Shannon entropy can be defined as:
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H(S) = −
∑

cεC pclog(pc)

where S is the set of training points and pc is the probability of a sample being class c.

Training the parameters Θj of node j involves maximizing the information gain at the

node. Each split node is associated with a binary split function that decides which child

of the node each data point traverses to next in the tree.

There are several popular algorithms associated with the construction of decision trees.

Some of them are listed here:

3.1.1 ID3

Iterative Dichotomiser 3 (ID3), invented by Ross Quinlan [49], [50], [51], is one of

the first decision-tree construction algorithms. In every iteration of ID3, a previously

unselected attribute associated with the biggest information gain is selected to split the

set of observations at a node, beginning at the root of the tree. Recursive division of

internal nodes occurs until:

• every item of a node has the same label, in which case the node becomes a leaf,

• all attributes have been previously selected, in which case the node becomes a leaf

labelled with the class of the most frequently occuring element in the node

• if a subset after a split is empty, in which case the parent node becomes a leaf

labelled with the class of the most frequently occuring element in the node

During testing, each new object is classified by the traversing down the decision tree

from the root to a leaf node, which contains the predicted label.
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3.1.2 C4.5

C4.5 was also invented by Quinlan [52] as an improvement to ID3. The improvements

made from ID3 include the ability of the algorithm to handle continuous attribute values

in addition to discrete attribute values, as well as account for missing attribute values

in the training set. Attributes with missing values are neglected during the process of

choosing the attribute that best satisfies the splitting criterion. In addition, decision

trees constructed with C4.5 are pruned; pruning reduces the size of the decision tree

and improves accuracy by reducing overfitting.

3.1.3 CART

The Classification and Regression Trees (CART) method, introduced by Breiman et al.

[53], is similar to the C4.5 method. A decision tree is first constructed to a maximal

size, and then pruned sequentially back to the root. The optimal decision tree is selected

from the sequence of trees (from maximally grown to fully pruned). CART trees can be

optimized to perform classification or regression.

The advantages associated with decision trees are often attributed to their underlying

simplicity: decision trees are easy to understand and interpret; classification and regres-

sion results can be explained by Boolean logic; they are easy to implement irrespective of

the size of the dataset and can handle variability in the attribute value types (numerical,

categorical).

However, the problem of constructing an optimal decision tree is NP-complete; thus,

trees constructed with greedy algorithms may not yield a globally-optimal solution.
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Another problem associated with individual decision trees is that they tend to over-fit

and generalize poorly. Ensembles of decision trees, such as random forests, alleviate the

problem of over-fitting by introducing an element of randomness while constructing the

individual trees and creating an ensemble of such randomized trees [13].

3.2 Random Forests

Ensemble methods, such as random forests, have shown to be more accurate than in-

dividual decision trees in tasks of classification and regression. In random forests [54],

multiple decision trees are grown independently and can be grown in parallel. Each tree

is built using all the training samples sampled with replacement. The forest is trained to

optimize the parameters at each node of every tree. While training a tree, each node of

the tree has access to only a randomly chosen subset of the entire set of features. Train-

ing consists of selecting at each internal node the feature in the randomly chosen feature

subset that best separates the training samples. All trees are fully grown, i.e. they are

not pruned. During testing, all decision trees in the forest classify the test gesture, and

the predicted class label is simply the label that is outputted most frequently by the

individual decision trees. Dietterich [55] experimentally compares the effectiveness of

the different methods of creating ensembles in order to boost the accuracy of a decision

tree.

Random forests differ from other ensemble classification methods such as bagging and

boosting. Bagging, an acronym for ”bootstrap aggregating”, is a method of creating

multiple versions of a decision tree predictor, which are used in aggregation to form a

decision by consensus [56]. Each decision tree is constructed using bootstrap replicates
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of the training set, that is, each training set is constructed by sampling uniformly from

the original training set with replacement. The concept of boosting, introduced by

Friedman [57], involves the sequential construction of trees, where the structure of a

decision tree depends on the structure of previously-built trees.

Random forests have been shown to be robust to the effects of noise and outliers. More-

over, they generalize well to variations in data [54]. Thus, random forests are suitable

for classification tasks involving data such as gestures because data collected by image

and depth sensors can be sensitive to noise and their execution can exhibit a high level

of variance. We employ random forests in our gesture segmentation and classification

framework, details of which are presented in the next chapter.



Chapter 4

Formulation

Here, we describe in detail the formulation of our gesture recognition system. We first

explain the procedure used in training our random forest classifier, and then illustrate

how the classifier is used to simultaneously spot and classify gestures from a continuous

stream.

4.1 Training

4.1.1 Input

The training set of gestures used in our experiments are labeled with true temporal

segmentation as well as classification values. That is, each video sample used in training

is associated with a file that describes the class labels of the gestures that are present

in the video, along with their start and end frames. Let n be the number of different

gestures that are present in the gesture vocabulary. We trained a n + 1-class random

forest classifier using all examples of the n different gestures in the training set, as well

as some randomly selected examples of non-gestures (found in intervals between two

gestures). Non-gestural examples may contain a sequence of gestural silence, that is
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Figure 4.1: Random Forest Training

when the user is relatively static, or they may contain non-gestural movements, that is

when the user is moving or performing out-of-vocabulary gestures.

4.1.2 Feature Extraction

Our system extracts several features from each frame of every video sample during

training. We empirically selected the feature description that performs most accurately.

Since both datasets on which we perform our experiments were recorded with systems

capable of extracting depth information from the scence, we have access to both skeletal

information of the users, as well as RGBD image data. Thus, we collected both joint-

based and image-based features.
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Since all gestures in the vocabulary of both datasets were performed by the movement

of one or both arms, our system computed features of several body joints such as the

positions of the shoulders, elbows and wrists of the left and right arms. Since gestures

are performed by subjects with different heights, at different distances from the camera

sensor, we first normalized the positional coordinates of the users’ joints using the length

of the user’s torso (t) as a reference. Mathematically:

Wn
x,j =

Wx,j−Wx,root

t , Wn
y =

Wy,j−Wy,root

t , Wn
z =

Wz,j−Wz,root

t

where:

Wn
x,j ,W

n
y,j ,W

n
z,j are the normalized x, y, z positional coordinates for joint j,

Wx,j ,Wy,j ,Wz,j are the original x, y, z positional coordinates for joint j,

Wx,root,Wy,root,Wz,root are the original x, y, z positional coordinates for the hip joint,

and

t =
√

(Wx,head −Wx,hip)2 + (Wy,head −Wy,hip)2 + (Wz,head −Wz,hip)2

We used the normalized positional coordinates (Wn
x ,W

n
y ,W

n
z ) of these joints along

with their rotational values (Rx, Ry, Rz, Rw), which are provided with the dataset,

and compute values for their velocities (W ′x,W
′
y,W

′
z, R

′
x, R

′
y, R

′
z, R

′
w) and accelerations

(W ′′x ,W
′′
y ,W

′′
z , R

′′
x, R

′′
y , R

′′
z , R

′′
w).

Our system also made use of image-based features based on edge-orientations and optical

flow. We computed HOG features and HOF features inside rectangular areas centered

on the various joints of the left and right limbs and aggregated them into a single vector.

We found that augmenting our skeletal feature vector with HOG features on rectangular

areas centered on the left and right hands help improve classification accuracy.



28

Thus, every frame of every sample video is described by several joint-based and image-

based feature vectors. We used the different feature sets to train corresponding classifiers,

and tested their performance on a validation set. Thus, we determined the best feature

representation to describe the gestures, which we used to train our final classifier.

4.1.3 Gesture Representation

Decision trees (and therefore, random forests) require a uniform descriptor of all objects

that are used to construct them. This is because a feature that has been selected to split

a node must be uniformly located on all objects. For example, if the first feature of the

feature vector representing say, the x-component of the angular velocity of the left-wrist

joint, is selected to split a node in a decision tree, then the first feature of the feature

vector of all objects must correspond to the same attribute, that is the x-component of

the angular velocity of the left-wrist joint.

Because gestures in our dataset are temporal sequences of varying length, consisting of

a fixed number of features extracted at every frame, there arises the need to represent

every gesture with a feature vector of the same length. We achieved this by first smooth-

ing all features using a moving average filter, dividing the gesture into 10 equi-length

temporal segments, and representing each temporal segment with a vector of the median

elements of all features. The representative vectors of each temporal segment were then

concatenated into a single feature vector.

Because our classifier is meant to handle instances of candidate intervals that contain no

gestures, or gestures that are not contained in the vocabulary of the system, we created

a number of examples of such intervals. We selected a random interval of frames between
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the end of a gesture, and the start of another gesture. The length of the interval was

chosen to be more than the number of frames in the shortest gesture in the training

set and less than the number of frames in the longest gesture in the training set. A

uniform feature vector of this non-gestural example is then constructed the same way

as described above. Such a consistent conversion yielded a more concise and uniform

representation of all gestures (and non-gestures), which we then used to train our random

forest classifier.

4.1.4 Random Forest Training

A random forest classification model consists of several trees. Increasing the number of

trees in a random forest helps increase classification accuracy upto a certain number of

trees after which the increase in classification accuracy is insignificant. We selected the

optimal number of trees through experimentation.

We defined the training set as D = {(X1, Y1), ..., (Xn, Yn)}. Here, (X1, ...,Xn) corre-

sponds to the uniform-length feature vector representing the gesture or non-gesture, and

(Y1, ..., Yn) represents their corresponding class labels.

Decision trees t(x, φk) are constructed until they are fully grown, that is without pruning.

Here x is an input vector and φk is a random vector used to generate a bootstrap sample

of objects from the training set D. That is, for each decision tree, n samples are chosen

randomly with replacement from D.

Let d be the dimensionality of the feature vector of the inputs. At each internal node

of the tree, m features are selected randomly from the available d, such that m < d.
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We chose: m =
√
d. From the m chosen features, the feature that provides the most

information gain is selected to split the node. Information gain (I) is be defined as:

Ij = H(Sj)−
∑

kε(L,R)

|Sk
j |
|S| H(Skj )

where Sj is the set of training points at node j, H(Sj) is the Shannon entropy at node

j before the split, and SLj and SRj are the sets of points at the right child and left child

respectively of the parent node j after the split.

Here, H is the Shannon entropy and can be defined as:

H(S) = −
∑

cεC pclog(pc) where pc is the probability of a sample being class c.

Algorithm 1: Pseudocode for training a Random Forest

Data: N training gesture samples, each represented by a feature vector of length d

Result: Random Forest gesture classification model

for each tree in the forest do

Sample N datapoints with replacement;

for each internal node in the tree do

Randomly sample m attributes (m =
√
d);

Select the feature from this randomly selected set that provides the most

information gain;

Split the input datapoints using the selected feature, creating left and right

children nodes;

end

return Fully grown decision tree

end

return Random Forest
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We trained and saved a random forest classification model based on the features that we

extracted. There is a need to strengthen the classifier’s ability to accurately detect inter-

vals of non-gestures because the randomly chosen intervals of non-gestural examples fail

to fully model the class of non-gestures. In order to achieve this, we applied the random

forest model on continuous input of the training set and collected false positives and

false negatives, which are examples of intervals from the training set that the classifier

fails to classify correctly. False positives correspond to instances where non-gestural in-

stances are classified as gestures, whereas false negatives correspond to instances where

a gesture gets incorrectly classified as a non-gesture.The set of false positives and false

negatives instances is then added to the original training set, and the random forest is

re-trained using the new extended set of training examples. This process of bootstrap-

ping, as performed by Marin et al. in [58], is performed iteratively until the number of

false positives gets reduced below a threshold.

Algorithm 2: Pseudocode for improving classifier by bootstrapping

Data: Original Random Forest classifier F , and Original Training Set S

Result: Improved Random Forest gesture classification model

for i = 1,...,Nt do

Classify continuous input of the training set using the current random forest;

Collect instances of false positives and false negatives and add them to the training

set S;

Retrain the random forest using the updated training set S;

end

Nt is the value of the iteration where the number of false positives is below a

pre-determined threshold;

return Improved Random Forest
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4.2 Testing

The task during testing is to use our trained random forest model to determine the

temporal segmentation of gestures in a continuous video and accurately classify the

segmented gesture. A sample test video contains a number of frames, and the same

features collected during training are computed for every frame. Unlike training videos,

test videos do not contain information about where gestures start and end. Therefore,

we perform multi-scale sliding window classification to predict the class labels of the

gestures, as well as their start and end-points.

4.2.1 Multi-scale sliding window classification

For each input video, gesture candidates are constructed at different temporal scales.

Let fs be the number of frames in the shortest gesture in the training set and fl be the

number of frames in the longest gesture in the training set. Then, the temporal scales

range from length fs to length fl, in increments of 3 frames. Let, G = {g1, ...gn} be the

set of gesture candidates at different temporal scales. At each scale, a candidate gesture

gi is constructed by concatenating the feature vectors at an interval specified by the

temporal scale, so that the dimensions of the feature vector match those of the gestures

used to train the classification model.

A buffer of length larger than the longest temporal scale is defined. At each temporal

scale within the buffer, candidate gestures are constructed and each candidate gesture

is classified by our trained random forest model. Each candidate gesture is given a class

label and a confidence score by the classifier. The confidence score is the percentage of

decision trees that vote for the predicted class. A higher confidence score alludes to the
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Figure 4.2: Multi-scale Sliding Window Classification

fact that the classifier is more certain of its prediction, whereas a lower confidence score

suggests the distribution of prediction votes is spreadout among multiple classes.

Within the buffer, a sliding window is used to construct gesture candidates at each tem-

poral scale. For a buffer of size b, the number of gesture candidates at scale si is equal

to b− si + 1. Gesture candidates generated by the sliding window within the buffer at

each scale compete to generate a likely gesture candidate Gsi at that scale. Since gesture

candidates at the neighborhood of where the gesture is truly temporally located tend

to be classified as the same gesture, we perform Non-Maximal Suppression to select the

most likely gesture candidate. That is, for each scale si, b−si+1 gesture candidates are

generated and the one classified with the highest confidence (Gsi) is selected. Finally,
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the likely gesture candidates at the various scales compete to generate the final predicted

gesture within the buffer. Therefore, within the buffer, the scale of the final predicted

gesture helps determine the segmentation boundaries of the gesture, whereas its class

label is that which is predicted by the random forest classifier. The end point of the

predicted gesture is chosen to be the start point of the new buffer. This process is then

repeated until the end of the test video is reached.
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Algorithm 3: Multiscale Sliding Window Gesture Classification Pseudocode

Data: Input video

Result: Annotation of start-and-end points of gestures in the video along with their

class labels

Buffer Length = Max Gesture Scale + 10;

Start Buffer = 1;

while End of File is not reached do

while End of Buffer is not reached do

for all temporal scales do

Use Sliding window of scale s to generate candidate gestures;

Classifiy candidate gestures at scale s, and save candidate gesture with

highest confidence;

end

Compare candidate gestures at each scale and select the one with the highest

confidence;

Save segmentation boundary as well as class label;

end

Update Start Buffer to be the end of the predicted gesture;

return Gesture boundary and label within the buffer

end

return All gesture boundaries and their corresponding predicted labels



Chapter 5

Datasets

Here, we describe in detail the nature of the datasets we have used to test our gesture

recognition system.

5.1 NATOPS

The Naval Air Training and Operating Procedures Standardization (NATOPS) gesture

vocabulary comprises of a set of gestures used to communicate commands to naval air-

craft pilots by officers on an aircraft carrier deck. The NATOPS dataset [59] consists

of 24 unique aircraft handling signals, which is a subset of the set of gestures in the

NATOPS vocabulary, performed by 20 different subjects, where each gesture has been

performed 20 times by all subjects. Thus, each gesture has 400 samples. The samples

were recorded at 20 FPS using a stereo camera at a resolution of 320 x 240 pixels. The

videos were recorded in such a way that the position of the camera and the subject rela-

tive to the camera was fixed, and changes in illumination and background was avoided.

The dataset includes RGB color images, depth maps, and mask images for each frame

of all videos. A 12 dimensional vector of body features (angular joint velocities for the

right and left elbows and wrists), as well as an 8 dimensional vector of hand features
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Figure 5.1: RGB, Depth, and User-Mask Segmentation of a subject performing ges-
ture 1 ’I Have’ in the NATOPS dataset

(probability values for hand shapes for the left and right hands) collected by Song et al.

[59] was also provided for all frames of all videos of the dataset.

5.2 CHALEARN

The CHALEARN dataset was provided as part of the 2014 Looking at People Gesture

Recognition Challenge [60]. The focus of the gesture recognition challenge was to

create a gesture recognition system trained on several examples of each gesture category

performed by various users. The gesture vocabulary contains 20 unique Italian cultural

and anthropological signs. Gestural communication is a major part of communication

in Italian culture, and developing systems to recognize such gestures is a task that can

have many applications.

The development data used to train the recognition system contains a total of 7,754

manually labeled gestures. Additionally, a validation set with 3,363 labelled gestures was
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Figure 5.2: RGB, Depth, and User-Mask Segmentation of a subject performing ges-
ture 1 ’sonostufo’ in the CHALEARN dataset

provided to test the performance of the trained classifier. During the final evaluation

phase, another 2,742 gestures were provided. The gesture examples are contained in

several video clips. Along with the RGB data, depth data, user mask data along with

skeletal information was also provided. Skeletal information was contained in a .csv

file, where world coordinates, rotation values and pixel coordinates were provided for 20

different joints of the user in each frame of the video clip.



Chapter 6

Implementation Details

Our gesture recognition system was trained and tested on a Dell workstation with a 2.67

GHz X5650 Intel(R) Xeon(R) processor with 12 GB RAM. The NATOPS video samples

were recorded at 20 FPS using a stereo camera at a resolution of 320 x 240 pixels,

whereas the CHALEARN video samples were recorded using the Microsoft Kinect. The

Microsoft Kinect is currently the most commonly used depth sensor for research in

computer vision, and has popularized research and application development in gesture

recognition due to the availability of Microsoft’s Kinect SDK (software development kit),

which allows users to access the depth and video streams of the Kinect along with M

icrosoft’s proprietary body-tracking algorithms, as well as open-source alternatives such

as the OpenNI framework [46]. The Kinect includes a VGA video camera with 640x480

pixel resolution, placed beside a QVGA depth camera with 320x240 pixel resolution,

which respectively produce streams of RGB and depth images at up to 30 frames per

second.

To compute HOG and HOF features, we developed scripts written in Python that uti-

lized the OpenCV library. The remaining scripts to collect features and represent ges-

tures were written in MATLAB. A random forest library in MATLAB based on a random



40

forest package in R (ported by Andy Liaw and Matthew Wiener from the Fortran orig-

inal by Leo Breiman) was used, and was preferred to MATLAB’s inbuilt Treebagger

class. The code is available in https://code.google.com/p/randomforest-matlab/.

The performance of our code was verified using several evaluation metrics. Confusion

matrices were used to visualize the performance of various classifiers on segmented ges-

tures. A confusion matrix, also known as a contingency table, helps visualize the per-

formance of the classifier. Columns of a confusion matrix represent the predicted class,

whereas each row represents the true class. The confusion matrix helps illustrate the

percentage of gestures that are correctly classified, and the percentage of gestures that

are confused for another gesture. The diagonal entries of the matrix represent instances

that are correctly classified; taking the average of the diagonal of the confusion matrix

gives the average accuracy of the classifier.

In order to evaluate the performance of our classifier on continuous input, we used the

Jaccard similarity index. The Jaccard similarity is a metric used to measure the overlap

between predictions and truth values. The Jaccard index score between two vectors is

simply the intersection divided by the union, i.e. the percentage of similarity between

the two vectors. The Jaccard Index is defined as:

Js,n =
As,n∩Bs,n

As,n∪Bs,n

Here, As,n is the vector describing the ground truth indices of gesture n at sequence

s, whereas Bs,n is the vector describing the predicted indices of gesture n at sequence

s. If false positives are predicted, a Jaccard index of 0 is assignned. The final Jaccard

score for each sequence is the average of Jaccard index scores of all gestures. The final

Jaccard index score is the average of the Jaccard scores obtained for all test sequences.



Chapter 7

Experimental Results

Here we describe the experiments performed to evaluate our gesture recognition system

on the two datasets. We used the NATOPS dataset to evaluate our gesture classification

system in a non-continuous setting. We used a set of gesture samples to train our

gesture classifier, and tested its performance on a test-set of segmented gestures. In

the CHALEARN dataset, the methods used to train our classifier is similar to that

used in the NATOPS dataset. However, due to the availability of evaluation and test

videos where the user performs both in-vocabulary and out-of-vocabulary gestures, with

intervals of gestural silence or transitions, we were able to test the performance of our

system on continuous test input. This way, we were able to learn about the effectiveness

of our system in not only labelling candidate gestures, but also finding the start and end

points of the candidate gestures in the temporal stream.

7.1 NATOPS

From the NATOPS dataset, we constructed the following features sets:

(a) MIT body-pose-based feature set: This feature set [17] consists of 20 unique fea-

tures for each timeframe for every gesture. The extracted features are angular joint
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velocities for the right and left elbows and wrists, as well as probability values of

hand shapes for the left and right hands. A comprehensive description of how the

features were extracted has been provide by Song et al. [17].

For each gesture sample, features are represented by a 2-d matrix whose columns

equal the number of feature variables(20), and whose rows equal the number of

frames. We converted this 2-d matrix into a single-dimensional feature-vector rep-

resentation of length 200 by lining up feature vectors from timeframes at evenly

spaced intervals.

(b) CRA image-based feature set: Each gesture sample of the Charles River Analytics

(CRA) feature set is represented by a 2-d matrix whose columns equal the num-

ber of feature variables (400), which were calculated using randomly pooled edge-

orientation and edge-density features, and whose row equals the number of frames

(F) [61]. We converted this 2-d matrix into a single-dimension feature vector of

length 4000 by lining up feature vectors from timeframes at evenly spaced intervals.

(c) Dimensionality-reduced CRA image-based feature set: We reduced the above 4000-d

feature space into a 200-d feature space via Principal Component Analyis (PCA).

(d) Feature set combining both MIT and CRA features: In this feature set, the 200-d

feature vectors obtained from the MIT (a) and CRA (c) feature sets were combined

to form a 400d feature vector for every gesture.

For each feature set described above, we trained random forests with 500 trees on 19 sub-

jects and tested on the remaining subject in a leave-one-out cross-validation approach.
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Feature set Average Classifica-
tion Accuracy

Feature set a (i.e. body-
pose-based features)

84.77%

Feature set b (i.e.
image-based features)

76.63%

Feature set c (i.e.
image-based features
after PCA)

67.74%

Feature set d (i.e. both
features i.e. combining
a,c)

87.35%

Table 7.1: Average Classification accuracy on all 24 gestures

Classifier Average Classifica-
tion Accuracy

k-Nearest Neighbors us-
ing DTW distances (our
baseline)

58.36%

Random Forest (our) 87.35%

Table 7.2: Performance comparison with baseline approach.

7.1.1 Results

We computed the average recognition accuracy of the random forest classifier on the

four different feature sets (a) - (d) of the NATOPS dataset for all 20 test subjects each

performing the 24 gestures in the vocabulary. We can see that the classifier performs

better on the feature-set containing only body-pose features (a) than the feature-set con-

taining only image-based features (b). This suggests, in our case, that body-pose based

features encode more class-discerning information than image-based features. However,

the highest average classification accuracy is achieved on the feature set that combines

body-pose features with image-based features, suggesting the benefit of combining the

two approaches of collecting features.
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Figure 7.1: Confusion Matrix for feature set (d) i.e. combining both MIT and CRA
features

We examined the classification performance of the random forest classifier using the

various featuresets (Table 7.1). The feature set containing only body-pose features is

correctly classified 84.77% of the time, whereas the feature set containing only image-

based features is correctly classified 76.63% of the time. The highest average classifica-

tion accuracy of 87.35% is achieved on feature set (d), i.e. the feature set that combines

both body-pose features as well as image-based features.

We also computed a confusion matrix to demonstrate the performance of our classifier
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Figure 7.2: Examples of gesture pairs which have similar motional structure but differ
in handshapes.

for each gesture (Figure 7.1). This figure illustrates the degree of similarity between

gestures in the dataset. For example, gesture 2 was incorrectly classified as gesture 3

18% of the time, thus suggesting an inherent similarity in structure. As expected, the

two gestures share the same motional structure, only differing in handshapes. Similarly

gesture pairs (10, 11) and (20, 21) were confused, often getting misclassified as the other

(Figure 7.2). The misclassifications between these pairs of similar gestures is illustrated

by a confusion matrix (Figure 7.3).
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Figure 7.3: Confusion Matrix for pairs of similar gestures in the dataset

Classifier Average Classifica-
tion Accuracy

HMM 77.67%

HCRF 78.0%

Linked HCRF 87.0%

Random Forest (our) 91.5%

Table 7.3: Performance comparison on pairs of similar gestures with other approaches.
The HMM, HCRF, and Linked HCRF results were presented by Song et al. [1].

We compared the classification performance of our random forest classifier with the

performance of our baseline, as well as other classifiers that have been used on this

dataset (Table 7.2, Table 7.3). Our baseline approach (k-NN with DTW distances)

fares poorly against competing models with an average classification accuracy of less

than 60%, but our random forest approach on the challenging subset of similar gestures
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yields results that exceeds those produced by the state-of-the-art (Linked HCRF) (Table

7.3).

7.2 CHALEARN

From the CHALEARN dataset, we constructed the following features sets:

(a) CHALEARN featureset a: Features contain unedited raw skeleton data, that is,

each frame consists of 9 values for all 20 joints. The feature vector per frame has

180 dimensions, and per gesture has 1800 dimensions.

(b) CHALEARN featureset b: Features contain normalized positional and velocity data

for 9 joints. The feature vector per frame has 126 dimensions, and per gesture has

1260 dimensions.

(c) CHALEARN featureset c: Features contain positional, velocity, and acceleration

data for 9 joints. Dimensions. The feature vector per frame has 189 dimensions,

and per gesture has 1890 dimensions.

(d) CHALEARN featureset d: Features contain HOG data for boxes around 9 joints

(head, left shoulder, left elbow, left wrist, left hand, right shoulder, right elbow, right

wrist, right hand). Each image from the RGB video is first converted to grayscale.

For each image, we define boxes, which are 32x32 pixel squares centered on the joint.

Each box is divided into 4x4 cells, each of which is represented by a 9-dimensional

histogram (i.e. 9 orientation bins between 0 and 180 degrees) of oriented gradients.

A [-1,0,1] gradient filter is used in both directions to calculate the gradients. Each

box is divided into 3x3 overlapping blocks (each block contains 2x2 cells), which are
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used to normalize the cell histograms. Thus, each block is a 36-dimensional vector.

There are 9 blocks in a box, thus the normalized histogram can be represented as a

324-dimensional vector. Since there are 9 such boxes, the feature vector per frame

has 2916 dimensions, and per gesture has 29160 dimensions.

(e) CHALEARN featureset e: Features contain HOF data for boxes around 9 joints. A

dense optical flow is first calculated between two corresponding boxes in consecutive

frames using Gunnar Farneback’s optical flow algorithm [4] in OpenCV. Histograms

of Optical flow are then calculated similarly as above. The feature vector per frame

has 2916 dimensions, and per gesture has 29160 dimensions.

(f) CHALEARN featureset f: This feature set combines featureset (b) with HOG data

for boxes around left and right hand.

For each feature set described above, we trained random forests with 500 trees on a

randomly selected subset that comprised 90

7.2.1 Results

The feature set that combines the normalized positional and velocity information, with

HOG features of the hands (featureset f), is correctly classified correctly 88.91% of the

time (Table 7.4), which is the highest average classification accuracy of all feature sets.

We also compared the average classification accuracy of a gesture classifier based on a

single multiclass random forest, to that based on multiple one-vs-the rest random forests

(Table 7.5). To train a one-vs-the-rest random forest, all gesture samples from a given

gesture class are selected as positive examples, and a comparable number of randomly

selected examples of other gestures are selected as negative examples. A binary random
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Feature set Average Classifica-
tion Accuracy

Feature set a 81.45%

Feature set b 88.12%

Feature set c 83.50%

Feature set d 54.65%

Feature set e 40.12%

Feature set f 88.91%

Table 7.4: Average classification accuracy on all 20 gestures

1-v-Rest Random For-
est

83.24%

Multiclass Random For-
est

88.91%

Table 7.5: Binary classifier vs Multiclass classifier

Number of Trees Average Classifica-
tion Accuracy

1 45.03%

10 70.07%

100 84.15%

500 85.84%

1000 83.65%

Table 7.6: Effect of increasing the number of trees in the random forest on average
classification accuracy

forest classifier is thus trained for all gesture classes. During testing, the one-vs-rest

classifiers compete to label the gesture; the classifier that classifies the test gesture with

the highest confidence is selected as the label of the test gesture. We found that a

single random forest classifier performs better than a system of multiple one-vs-the-rest

random forest classifiers.

We illustrate the effect of increasing the number of decision trees in the random forest

on classifier accuracy (Table 7.6). When a single decision tree is used, the average

classifier accuracy is 45.03%. Increasing the number of decision trees in the random forest
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Number of features se-
lected to split a node

Average Classifica-
tion Accuracy

1 65.55%
1
2

√
M 83.80%√
M 85.84%

2
√
M 81.46%

M 79.71%

Table 7.7: Effect of increasing the number of features used to split a node in the
random forest on average classification accuracy

Figure 7.4: Confusion Matrix for feature set (b)

increases classifier accuracy upto a certain point, after which the effect of increasing

the number of trees is marginal or insignificant. Here, the feature set containing only

positional and velocity information is used and the number of features selected at random

to split a node of a decision tree is fixed at
√
M . During testing, we use a random forest
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Figure 7.5: Number of misclassifications in the training set while iterative training of
random forest

containing 500 trees, as 500 provides a good balance between classifier accuracy and size

of the forest.

We compared the effect of various values for the number of randomly selected features

to split a node of a decision tree (Table 7.7). Here, the feature set containing only

positional and velocity information is used and the number of trees in the random forest

is fixed at 500. During testing, we selected
√
M as the number of randomly selected

features to split a node as it provides a good balance between classifier accuracy and

speed at which the classifier is trained.

We computed a confusion matrix to demonstrate the performance of our classifier for

each gesture (Figure 7.4). This figure illustrates the degree of similarity between gestures
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Figure 7.6: Average Jaccard index score of classifier while iterative training of random
forest

in the dataset. For example, gesture 14 is incorrectly classified as gesture 15 7% of the

time, thus suggesting an inherent similarity in structure.

The iterative procedure of training a random forest improves its capacity to correctly

classify and segment gestures. This is evident in the decrease of the number of mis-

classifications when the random forest model is applied to the continuous input of the

training set (Figure 7.5), as well as in the increase in the Jaccard index score in the test

set (Figure 7.6).

Table 7.8 shows the Jaccard score of our method compared with the baseline and win-

ning scores of the CHALEARN gesture recognition challenge. The competition winner,

a team from Laboratoire d’InfoRmatique en Image et Systèmes d’information (LIRIS),
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Method Jaccard Index Seg-
mentation and Clas-
sification Score

Deep Neural Network 0.84

Our Score 0.68

Competition Baseline 0.37

Table 7.8: Jaccard Index scores

used features extracted from skeleton joints and a deep neural network classifier to

achieve a Jaccard score of 84.9. Although our classifier achieves an accuracy of 88.91%,

our Jaccard score of 0.68 underlines the difficulty of achieving optimal results in classi-

fication tasks where temporal segmentation is not provided.



Chapter 8

Conclusion and Future Work

8.1 Discussion

We have presented a random forest framework for a multi-gesture classification problem.

The method consists of first creating a uniform fixed-dimensional feature representation

of all gesture samples, and then using all training samples to train a random forest. On

a challenging subset of the NATOPS dataset, our approach yields results comparable

to those produced by graphical models such as HCRFs. Although random forest clas-

sifiers do not explicitly model the inherent temporal nature of gestural data as done by

graphical models, its performance in accuracy on this particular dataset exceeds that

achieved by graphical models such as HMMs, and different variants of HCRFs. Addition-

ally our experiments also show that classification accuracy was improved by combining

pose-based features with image-based features, thus underlying the importance of a

well-chosen feature set for a classification task.

Although a simple approach has yielded good results with this dataset, there are areas

where improvements can be made. As our results have shown, there are some gestures

in both datasets that are easily confused and hence hinder the ability of the classifier

to achieve maximum accuracy. For example, some gesture pairs (e.g. (2, 3), (10, 11))
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in the NATOPS dataset are very similar in structure and therefore there are several

instances where the classifier misclassifies one as the other. For example, gestures 2

and 3 in the dataset have the same hand movements and only differ in hand-shape

(gesture 2 is performed with a thumbs-up hand-shape, while gesture 3 is performed with

a thumbs-down). Although probability measures for hand-shapes are part of the feature

description for each gesture, the probability of their selection during tree construction is

low due to the randomized nature of selecting features while building individual decision

trees. A possible fix for this problem is to fine-tune the process of feature selection during

tree-building by perhaps encoding a weighting scheme that emphasizes the selection of

more discriminative features.

On the CHALEARN dataset, our classifier yields a similar average accuracy score when

tested on a set of segmented gestures. However, the task of simultaneously detect-

ing and classifying gestures is a more difficult challenge than solely classifying correctly

segmented gestures, as the options to make an error increase. Using a sliding window ap-

proach, a classifier can fail to detect a gesture, inaccurately detect an out-of-vocabulary

gesture as an in-vocabulary gesture, or simply misclassify a gesture. Thus, improve-

ments need to made not just to minimize misclassifications of in-vocabulary gestures,

but also to robustly detect the presence of gestures and discriminate them from many

instances of out-of-vocabulary gestures.

Another problem encountered with the datasets is the presence of noise, or the absence

of data. There are instances where the joint locations that have been provided are inac-

curate or missing. This can be alluded to the imperfection of the systems used to record
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the data. For example, some gestures in the NATOPS feature set are similar to the ex-

tent that they only differ in handshapes. However, the features that describe handshapes

are missing in some samples, and therefore make the task of accurate classification very

difficult.

8.2 Strengths and Weaknesses

The strengths of our framework lie in its simplicity, speed, its capacity to generalize

well to variations in user height, distance to the sensor, speeds at which gestures are

performed, as well as its robustness to the effects of sensor noise. One area of the

framework that can be improved is the process of selecting and creating better feature

sets. Many additional features, such as joint-pair distances used by Yao et al. [62], can

be experimented with in order to investigate the possibility of improving the accuracy

of our framework. Additionally, selecting a small group of features over an interval of

frames to split a node in a decision tree, instead of selecting a single feature at a single

frame, might be better suited to the purpose of learning complex spatio-temporal objects

such as gestures.

8.3 Future Work

As stated above, there are ambiguities between similar gesture pairs in both datasets,

which the random forest classifier cannot differentiate well. A potential idea for further

exploration is to use another layer of tree-forest classifiers to identify the features that can

differentiate the ambiguities in order to further refine classification results. In general,

gesture classification can be performed in a hierarchical framework, where random forests
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at the top-most level will accurately separate a dynamically-defined set of super-classes,

each of which will be subject to further classification by classifiers at subsequent layers,

until all classes are well-separated.

Random forests have also been used in a structured learning framework to learn the

presence of edges in an image [63], and object classification [64]. Structured informa-

tion refers to the inherent topological structure that exists in label space. Most random

forest classification models assign class predictions to each data point, without taking

into account their inherent interdependence. Augmenting a random forest approach

within a structured learning framework, as has been done previously by Dollar et al.

[63] and Kontschieder et al. [64], helps better capture the relationship of the various

classes in feature space. In the domain of time-signals such as gestures, applying such

an approach might yield a better classification process by leveraging the information

provided by shared structures and poses that are present in the dataset. Thus, ex-

ploring this classification paradigm might yield promising results. Employing random

forest classification models along with random forest regression models might help better

segment gestures in the temporal domain. This procedure has been used by Schulter

et al. [65] where object detection is performed using a random forest classification

model and the size of the bounding box is determined using a random forest regression

model. Lehrman et al. [66] use a forest of Autoregressive (AR) trees to capture nonlin-

ear and non-parametric interactions in temporal data. A similar approach in a gesture

segmentation and recognition scheme is another avenue for possible exploration.
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