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A B S T R A C T

A complete gesture recognition system should localize and classify each gesture from a given gesture
vocabulary, within a continuous video stream. In this work, we compare two approaches: a method that
performs the tasks of temporal segmentation and classification simultaneously with another that performs
the tasks sequentially. The first method trains a single random forest model to recognize gestures from
a given vocabulary, as presented in a training dataset of video plus 3D body joint locations, as well as
out-of-vocabulary (non-gesture) instances. The second method employs a cascaded approach, training a
binary random forest model to distinguish gestures from background and a multi-class random forest
model to classify segmented gestures. Given a test input video stream, both frameworks are applied using
sliding windows at multiple temporal scales. We evaluated our formulation in segmenting and recogniz-
ing gestures from two different benchmark datasets: the NATOPS dataset of 9600 gesture instances from
a vocabulary of 24 aircraft handling signals, and the ChaLearn dataset of 7754 gesture instances from a
vocabulary of 20 Italian communication gestures. The performance of our method compares favorably with
state-of-the-art methods that employ Hidden Markov Models or Hidden Conditional Random Fields on the
NATOPS dataset. We conclude with a discussion of the advantages of using our model for the task of gesture
recognition and segmentation, and outline weaknesses which need to be addressed in the future.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The problem of spotting and recognizing meaningful gestures has
been an important research endeavor in the fields of computer vision
and pattern recognition. Research in this domain has a broad scope
of applications such as recognizing sign-language symbols, enabling
video surveillance, establishing new idioms in gaming and entertain-
ment, and developing new modes of human–computer interaction,
among others.

A specific example of a gesture recognition application can be
explored in the setting of a flight deck of an aircraft carrier. Deck
officers use a vocabulary of gestures to communicate commands
such as All clear, Move ahead, Turn left/right, and Slow down to air-
craft pilots. However, the advent of unmanned air vehicles (UAV) has
engendered the need to create a system capable of communicating
the same set of commands to these unmanned aircrafts. Equipping
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a UAV with a computer vision system capable of accurately and
automatically recognizing the existing set of gestures while they are
being performed by deck officers would provide the most efficient
solution to this problem, as it would permit the continued operation
of the current method of communication.

Another example of an application in gesture recognition lies
in the domain of understanding the context provided by commu-
nication gestures. Human beings communicate with words as well
as gestures. A computer vision system capable of deciphering the
gestures used in specific languages, such as Italian, can provide
contextual information that aids the task of translating a foreign
language.

It is important that the start and end points of a gesture be accu-
rately identified in a temporal stream, in order to maximize the
probability of correctly estimating the gesture label. One approach in
solving the segmentation and classification problem involves sepa-
rating them into two sub-problems where the task of segmentation
precedes the task of recognition (Fig. 1). In this method, the focus
is on first finding the gesture segmentation boundaries in time. The
candidate gestures produced by the segmentation algorithm is then
classified.

http://dx.doi.org/10.1016/j.imavis.2016.06.001
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Fig. 1. Pipeline view of framework where gesture segmentation is followed by classification.

Another approach simultaneously performs the tasks of segmen-
tation and classification (Fig. 2). In methods such as this, gesture
intervals for which above-threshold scores are given by the classifier
are deemed to be the labeled and segmented gesture. Given a
training set of multi-modal videos with multiple examples of all
gestures in a gesture vocabulary, we provide a comparison of the two
approaches, highlighting the strengths and weaknesses of each.

With the advent of cameras capable of capturing depth infor-
mation of a scene, gesture recognition datasets often contain 3D
skeletal information of the user as well as intensity information from
image frames. Designers of gesture recognition systems can there-
fore extract features from both skeletal as well as image data. In
our random forest classification model, gestures are represented by
a combination of both skeletal and image-based features. Because
the classifier requires uniform-length feature descriptors for all
gestures, we temporally divide the gestures into some number of
segments, from which feature vectors are extracted and finally con-
catenated.

The key contributions of this work are:

• the comparison of a framework that employs a single multi-
class random forest classification model to distinguish gestures
from a given vocabulary in a continuous video stream with a
framework that uses a cascaded approach,

• the fusion of joint-based and image-based features to create
an accurate feature representation of gestures that is robust to
variations in user height, distance of user to sensor and speed
of execution of gesture, and

• the creation of a uniform feature descriptor for gestures to
account for the variability in their length by division of gesture
into a fixed number of temporal segments followed by the
concatenation of the representative feature vectors of each
temporal segment.

2. Related work

Here, we list and briefly explain some of the important methods
that have been used in gesture recognition and are relevant to our
work. A more comprehensive survey of gesture recognition tech-
niques can be found elsewhere [1, 2].

Nearest neighbor models are often used in gesture classification
problems. Malassiotis et al. [3] used a k-NN classifier to classify
static sign language hand gestures. A normalized cross-correlation
measure was used to compare the feature vector of an input image

with those in the k-NN model. Dynamic Time Warping (DTW) can be
used to compute a matching score between two temporal sequences,
a variant of which was used by Alon et al. [4]. A drawback of k-NN
models is the difficulty in defining distance measures that clearly
demarcate different classes of time series observations.

A Hidden Markov Model (HMM) is another widely used tool
in temporal pattern recognition, having been implemented in
applications of speech recognition, handwriting recognition, as well
as gesture recognition. Starner et al. [5] employed an HMM-based
system to recognize American Sign Language symbols. One difficulty
while implementing HMMs is to determine an appropriate number
of hidden states, which can be domain-dependent.

The Conditional Random Field (CRF), introduced by Lafferty
et al. [6] is a discriminative graphical model with an advantage
over generative models, such as HMMs: the CRF does not assume
that observations are independent given the values of the hidden
variables. Hidden Conditional Random Fields (HCRFs) use hidden
variables to model the latent structure of the input signals by
defining a joint distribution over the class label and hidden state
labels conditioned on the observations [7]. HCRFs can model
the dependence between each state and the entire observation
sequence, unlike HMMs, which only capture the dependencies
between each state and its corresponding observation. Song et al.
used a Gaussian temporal-smoothing HCRF [8] to classify gestures
that combine both body and hand signals. They also presented con-
tinuous Latent Dynamic CRFs [9] to classify unsegmented gestures
from a continuous input stream of gestures.

Random forest models perform well in many classification tasks,
work efficiently on large datasets, and are very fast. Random forests
have been applied to good effect in real-time human pose recog-
nition [10], object segmentation [11], image classification [12], and
sign language recognition [13] among others. Decision forest models
have also been used variedly in gesture and action recognition
tasks [14–18]. Miranda et al. [19] used a gesture recognition scheme
based on decision forests, where each node in a tree in the forest
represented a keypose, and the leaves of the trees represented
gestures corresponding to the sequence of keyposes that constitute
the gesture as one traverses down a tree from root to leaf. Demirdjian
and Varri [20] proposed the use of temporal random forests in order
to recognize temporal events. Camgöz et al. [18] use random forests
to perform gesture spotting and classification. In contrast to our
work, they perform frame-level gesture classification by training a
model where every individual frame is considered a separate training
sample. Randomized decision forests have been shown to be robust
to the effects of noise and outliers. Moreover, they generalize well to

Fig. 2. Pipeline view of framework where gesture segmentation and classification is performed simultaneously.
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variations in data [21]. Thus, random forests are suitable for classi-
fication tasks involving data such as gestures because data collected
by image and depth sensors can be sensitive to noise and their
execution can exhibit a high level of variance.

More recently, deep learning approaches have gained popularity
in gesture spotting and recognition tasks. Neverova et al. [22] present
a gesture localization and recognition scheme based on multi-modal
deep learning operating at various spatial as well as temporal scales.
Pigou et al. [23] present an end-to-end neural network architecture
incorporating temporal convolutions and bidirectional recurrence to
perform gesture spotting and recognition.

Cameras equipped with depth sensors combined with skeleton
detection algorithms enable researchers to use features extracted
from 3D joint positions in gesture and action recognition problems.
Yao et al. [24] used concatenated raw coordinates of body joints for
gesture classification whereas Xia et al. [25] employed histograms of
3D joint locations for the task of human action recognition. Raptis
et al. [26] formulated an angular representation of user skeletons
as features for the problem of dance gesture recognition. In some
problems, it is advantageous to include in the feature representation,
information that 3D body joint locations are unable to capture,
e.g. hand shape. The salient properties of hand shape can be cap-
tured using image-based features such as Histograms of Oriented
Gradients (HOG) [27]. Song et al. [8] combined features extracted
from images of the user hands with joint features to classify gestures.

3. System overview

Here, we describe in detail the formulation of both gesture recog-
nition systems. We first explain the differences in the procedures
used in training our random forest frameworks, and then illustrate
how the classifiers are used to spot and classify gestures from a
continuous stream. Overviews of training the two frameworks are
depicted in Figs. 3 and 4 .

3.1. Training

The training set of gestures used in our experiments is labeled
with true temporal segmentation as well as classification values. That
is, each video sample used in training is associated with a file that
describes the class labels of the gestures that are present in the video,
along with their start and end frames.

3.1.1. Simultaneous spotting and classification framework
Let n be the number of different gestures that are present in

the gesture vocabulary. We trained a n + 1-class random forest
classifier using all examples of the n different gestures in the training

set, as well as some randomly selected examples of non-gestures
(found in intervals between two gestures). Non-gestural examples
may contain a sequence of gestural silence, that is when the user
is relatively static, or they may contain non-gestural movements,
that is when the user is moving or performing out-of-vocabulary
gestures.

3.1.2. Cascaded spotting and classification framework
For the cascaded framework, we trained a binary random forest

classifier using all instances of the n different gestures in the training
set as positive examples and an equivalent number of randomly
selected instances of non-gestures (found in intervals between two
gestures) as negative examples. This binary classifier was used
during test time to distinguish a gesture from the background. Addi-
tionally, we trained an n-class random forest classifier using all
examples of the n different gestures in the training set. This multi-
class classifier was used during test time to predict the class label of
a candidate gesture spotted by the binary classifier.

3.1.3. Feature extraction
Each training example consists of a varying number of frames,

each of which is described by a feature descriptor. In both frame-
works, our system computes normalized positional and velocity fea-
tures for nine different skeletal body joints (left and right shoulders,
elbows, wrists and hands, as well as the head joint). Since gestures
are performed by subjects with different heights, at different dis-
tances from the camera sensor, we first normalized the positional
coordinates of the users’ joints using the length of the user’s torso as
a reference. The normalized position vector for joint j at time t is:

Wj(t) =
Wr

j (t) − Wr
hip(t)

l
, (1)

where Wr
j (t) is the raw position vector for joint j at time t, Wr

hip(t) is
the raw position vector for the hip joint at time t, and l is the length
of the torso defined as:

l =‖ (Whead − Whip) ‖ . (2)

Our system uses the normalized positional coordinates
(Wx, Wy, Wz) of these nine joints along with their rotational values
(Rx, Ry, Rz, Rw), which are provided with the dataset, and computes
values for their velocities

(
W ′

x, W ′
y, W ′

z, R′
x, R′

y, R′
z, R′

w

)
.

Thus, there are 126 feature descriptors extracted from 3D skeletal
data for every frame. In addition, we augment our skeletal feature
vector with HOG features on 32 × 32 pixel squares centered on the
left and right hands. Each 32 × 32 pixel square window is divided

Fig. 3. Pipeline view of training our gesture recognition framework that performs simultaneous spotting and classification.
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Fig. 4. Pipeline view of training our cascaded gesture recognition framework that first spots a gesture before classifying it.

into 4 × 4 cells. Each window is also divided into 3 × 3 overlapping
blocks (each block contains 2 × 2 cells) to perform normalization.We
obtained a dimensionality-reduced representation of the HOG fea-
tures by performing Principal Component Analysis (PCA) and using
the first 20 principal components for each hand. The first 20 com-
ponents explained about half of the variance (0.44 % and 0.43 %
for the left and right hands respectively) and were chosen so that
the resulting feature space was a balanced combination of both the
skeletal features obtained from joints as well as hand-appearance
features obtained from HOG representations.Thus, every frame of
every instance in our training set is represented by a 166 dimensional
feature descriptor.

3.1.4. Gesture representation
In order to remove the effects of noisy measurements, we first

smoothed all features using a moving average filter spanning 5
frames. Smoothing features slightly improved classification accuracy
(an increase in classifier accuracy of 1.4% on a validation set on the
NATOPS dataset). Because instances of gestures and non-gestures
in our training set are temporal sequences of varying length, there
arises the need to represent every gesture with a feature vector of
the same length. We achieved this by dividing the gesture into 10
equal-length temporal segments, and representing each temporal
segment with a vector of the median elements of all features. Using
10 temporal segments provided a balance between keeping the fea-
ture representation concise, while encapsulating enough temporal
information useful in discerning the gesture classes. The representa-
tive vectors of each temporal segment were then concatenated into
a single feature vector.

3.1.5. Random forest training
We defined the training set as D =

{
(X1, Y1), . . . , (Xn, Yn)

}
. Here,

(X1, . . . , Xn) corresponds to the uniform-length feature vector repre-
senting each gesture or non-gesture, and (Y1, . . . , Yn) represents their
corresponding class labels.

A random forest classification model consists of several decision
tree classifiers

{
t(x,0k), k = 1, . . .

}
[21]. Each decision tree t(x,0k)

in the forest is constructed until they are fully grown. Here x is an
input vector and 0k is a random vector used to generate a bootstrap
sample of objects from the training set D. The ideal number of trees
in our random forest model was determined to be 500 by studying
the Out-of-Bag (OOB) error rate in the training data.

Let d be the dimensionality of the feature vector of the inputs. At
each internal node of the tree, m features are selected randomly from
the available d, such that m < d. m =

√
d provided the highest accu-

racy among other common choices for m (1, 0.5
√

d, 2
√

d, d). From

the m chosen features, the feature that provides the most informa-
tion gain is selected to split the node. Information gain (I) can be
defined as:

Ij = H(Sj) −
∑

k4(L,R)

|Sk
j |

|S| H
(

Sk
j

)
, (3)

where Sj is the set of training points at node j, H(Sj) is the Shannon
entropy at node j before the split, and SL

j and SR
j are the sets of points

at the right child and left child respectively of the parent node j after
the split.

The Shannon entropy can be defined as:

H(S) = −
∑
c4C

pc log(pc), (4)

where S is the set of training points and pc is the probability of a
sample being class c.

We trained and saved a random forest classification model based
on the features that we extracted. There is a need to strengthen
the classifier’s ability to accurately detect intervals of non-gestures
because the randomly chosen intervals of non-gestural examples fail
to fully model the class of non-gestures. In order to achieve this,
we applied the random forest model on continuous input of the
training set and collected false positives and false negatives, which
are examples of intervals from the training set that the classifier
fails to classify correctly. The set of false positive and false negative
instances is then added to the original training set, and the random
forest is re-trained using the new extended set of training examples.
This process of bootstrapping, as performed by Marin et al. [28], is
performed iteratively until the number of false positives is reduced
below a threshold.

3.2. Testing

The task during testing is to use our trained random forest model
to determine the temporal segmentation of gestures in a continuous
video and accurately classify the segmented gesture. A sample test
video contains a number of frames, and the same features collected
during training are computed for every frame. Unlike training videos,
test videos do not contain information about where gestures start
and end. Therefore, we perform multi-scale sliding window classifi-
cation to predict the class labels of the gestures, as well as their start
and end-points.
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3.3. Multi-scale sliding window classification

We performed multi-scale sliding window classification to
predict the class labels of the gestures, as well as their start and end
points.

For each input video, gesture candidates were constructed at
different temporal scales. Let fs be the number of frames in the
shortest gesture in the training set and fl be the number of frames
in the longest gesture in the training set. Then, the temporal scales
ranged from length fs to length fl, in increments of 5 frames. Let,
G = {g1, . . . gn} be the set of gesture candidates at different tem-
poral scales. At each scale, a candidate gesture gi was constructed
by concatenating the feature vectors at an interval specified by the
temporal scale, so that the dimensions of the feature vector matched
those of the gestures used to train the classification model.

Within a buffer of length larger than the longest temporal scale,
a sliding window was used to construct gesture candidates at each
temporal scale. For a buffer of size b, the number of gesture candi-
dates at scale si is equal to b − si + 1. We chose b to be 100 frames,
which is marginally greater than the maximum length of a gesture
in the training set. Overviews of training the two frameworks are
depicted in Figs. 5 and 6 .

3.3.1. Simultaneous spotting and classification framework
Gesture candidates generated by the sliding window within the

temporal neighborhood defined by the buffer at each scale were clas-
sified by our trained random forest model and competed to generate
a likely gesture candidate Gsi at that scale. Since gesture candidates
at the neighborhood of where the gesture is truly temporally located
tend to be classified as the same gesture, we performed Non-Maxima
Suppression to select the most likely gesture candidate.That is, for
each scale si, b − si + 1 gesture candidates were generated and the
one classified with the highest confidence

(
Gsi

)
within a temporal

neighborhood was selected. The confidence score is the percentage
of decision trees that vote for the predicted class. Finally, the likely
gesture candidates at the various scales competed to generate the
final predicted gesture within the buffer.

Therefore, within the buffer, the scale of the final predicted
gesture helps determine the segmentation boundaries of the gesture,
whereas its class label is that which is predicted by the random forest
classifier. The end point of the predicted gesture was chosen to be the
start point of the new buffer. This process was then repeated until
the end of the test video was reached.

3.3.2. Cascaded spotting and classification framework
In our cascaded framework, the multi-scale sliding window

mechanism outputted whether the gesture candidate was of the
gesture or background class, instead of predicting the final class label.

Non-overlapping candidates predicted as gestures by the upper-level
binary classifier were then given their final gesture label by the
multi-class random forest classifier.

3.3.3. Evaluation
In order to evaluate the performance of our gesture spotting

and classification frameworks, we use the Jaccard Index score. The
Jaccard Index score, in the context of gesture spotting and recog-
nition, is an intersection over union measure that incorporates the
evaluation of the predicted gesture label as well as the predicted
gesture start and end points [29] and is a common measure for such
tasks [18, 22, 23]. For a given sequence of test frames that contains a
gesture, the Jaccard Index score can be computed when the ground
truth gesture label, the ground truth gesture start and end points,
the predicted gesture label and the predicted gesture start and end
points are given (as illustrated in Fig. 7).

4. Datasets

Here, we describe in detail the nature of the datasets we have
used to test our gesture recognition system.

4.1. NATOPS

The Naval Air Training and Operating Procedures Standardization
(NATOPS) gesture vocabulary comprises of a set of gestures used to
communicate commands to naval aircraft pilots by officers on an air-
craft carrier deck. The NATOPS dataset [30] consists of 24 unique
aircraft handling signals, which is a subset of the set of gestures in
the NATOPS vocabulary, performed by 20 different subjects, where
each gesture has been performed 20 times by all subjects. Thus, each
gesture has 400 samples. The samples were recorded at 20 FPS using
a stereo camera at a resolution of 320 × 240 pixels. The videos were
recorded in such a way that the position of the camera and the sub-
ject relative to the camera was fixed, and changes in illumination
and background was avoided. The dataset includes RGB color images,
depth maps, and mask images for each frame of all videos. A 12
dimensional vector of body features (angular joint velocities for the
right and left elbows and wrists), as well as an 8 dimensional vector
of hand features (probability values for hand shapes for the left and
right hands) collected by Song et al. [30] was also provided for all
frames of all videos of the dataset (Fig. 8).

4.2. ChaLearn

The ChaLearn dataset was provided as part of the 2014 Looking at
People Gesture Recognition Challenge [31]. The focus of the gesture
recognition challenge was to create a gesture recognition system

Fig. 5. Pipeline view of testing our gesture recognition framework that performs simultaneous spotting and classification.
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Fig. 6. Pipeline view of testing our cascaded gesture recognition framework that first spots a gesture before classifying it.

trained on several examples of each gesture category performed by
various users. The gesture vocabulary contains 20 unique Italian cul-
tural and anthropological signs. Gestural communication is a major
part of communication in Italian culture, and developing systems to
recognize such gestures is a task that can have many applications.

The development data used to train the recognition system
contains a total of 7754 manually labeled gestures. Additionally, a
validation set with 3363 labeled gestures was provided to test the
performance of the trained classifier. During the final evaluation
phase, another 2742 gestures were provided. The gesture examples
are contained in several video clips. Along with the RGB data, depth
data, user mask data along with skeletal information was also pro-
vided. Skeletal information was contained in a .csv file, where world
coordinates, rotation values and pixel coordinates were provided for
20 different joints of the user in each frame of the video clip (Fig. 9).

5. Experiments

Here we describe the experiments performed to evaluate our ges-
ture recognition system on the two datasets. We used the NATOPS
dataset to evaluate our gesture classification system in a non-
continuous setting. We used a set of gesture samples to train our
gesture classifier, and tested its performance on a test-set of pre-
segmented gestures. The ChaLearn dataset consists of training and
test videos where the user performs both in-vocabulary and out-of-
vocabulary gestures, with intervals of gestural silence or transitions.
Thus, we used the ChaLearn dataset to test the performance of our
system on continuous input.

The difference in evaluation metrics (we use Average Classifi-
cation Accuracy for NATOPS and Jaccard Index for ChaLearn) is a
consequence of the differences in the nature of the datasets. The
NATOPS dataset consists of pre-segmented gesture examples, hence

Fig. 7. An example illustration of the Jaccard score.

the primary task is to formulate methods to do gesture classifi-
cation. The ChaLearn dataset consists of continuous videos where
segments of gesture performance is interspersed with segments of
non-gestures. Thus, the challenge is to both spot the gesture and
classify the spotted gesture.

From the NATOPS dataset, we trained our gesture recognition
model with the following features sets in order to formulate a good
feature representation:

(a) 3D skeletal joints and hand-shape based feature set
(SK + HS): This feature set [8] consists of 20 unique features
for each timeframe for every gesture. The extracted features
are angular joint velocities for the right and left elbows and
wrists, as well as probability values of hand shapes for the left
and right hands. Since each gesture instance is described by
a single feature descriptor obtained by concatenating 10 rep-
resentative feature vectors, the feature vector representing a
gesture instance is of length 200.

(b) Appearance-based feature set (EOD): Each frame of the
gesture instances is represented by a 400 dimensional feature
vector, which was calculated using randomly pooled edge-
orientation and edge-density features. Each gesture example
is represented by a single-dimension feature vector of length
4000.

(c) EODPCA: In this feature representation, we reduced the above
4000-d feature space into a 200-d feature space via Principal
Component Analysis (PCA).

(d) SK + HS + EODPCA: This feature set was obtained by con-
catenating the 200-d 3D skeletal joints and hand-shape
based (SK + HS) feature descriptor of a gesture with the
corresponding dimensionality-reduced edge orientation and
density (EOD-PCA) feature descriptor to form a 400-d feature
vector for every gesture.

For each feature set described above, we trained random forests
with 500 trees on 19 subjects and tested on the remaining subject in
a leave-one-out cross-validation approach.

We computed the average recognition accuracy (averaged across
all subjects and all gestures) of the random forest classifier on the
four different feature sets (a) - (d) of the NATOPS dataset for all
20 test subjects each performing the 24 gestures in the vocabulary
(Table 1). The feature set containing 3D skeletal joints and hand-
shape features (SK+HS) is correctly classified 84.77% of the time,
whereas the feature set containing features based on edge density
and orientation is correctly classified 76.63% of the time. This sug-
gests, in our case, that 3D joint-based based features encode more
class-discerning information than features based on edge density
and orientation. However, the highest classification accuracy of
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Fig. 8. RGB, Depth, and User-Mask Segmentation of a subject performing gesture 1 ‘I Have’ in the NATOPS dataset.

Fig. 9. RGB, Depth, and User-Mask Segmentation of a subject performing gesture 1 ‘sonostufo’ in the ChaLearn dataset.

87.35% is achieved on the feature set that combines joint-based
features with appearance-based features, suggesting the benefit of
combining the two approaches of collecting features.

Gesture pairs (2,3), (10, 11) and (20, 21) were confused, often
getting misclassified as the other (Fig. 10). Fig. 11 uses a confusion
matrix to illustrate the misclassifications between these pairs of
similar gestures.

We compared the classification performance of our random
forest classifier with the performance of other classifiers that have
been used on this dataset (Table 2). Our random forest approach
on the challenging subset of similar gestures, tested on samples
from 5 subjects as specified by Song et al. [32], yields results
that exceeds those produced by the state-of-the-art (Linked HCRF)

Table 1
Average classification accuracy on all 24 gestures of the NATOPS dataset.

Feature set Average classification Standard deviation
accuracy across subjects

Feature set a (SK + HS) 84.7% 5.1
Feature set b (EOD) 76.6% 8.4
Feature set c (EODPCA) 67.7% 9.5
Feature set d (SK + HS + EODPCA) 87.3% 4.9

(Table 2). The graphical models presented by Song et al. [32] were
trained using feature set a (SK+HS), whereas we use feature set d
(SK+HS+EODPCA) to train our gesture recognition model.

From the ChaLearn dataset, we trained our gesture recognition
model with the following feature sets:

(a) Raw 3D skeletal joint data (RAW): Features contain unedited
raw skeleton data, that is, each frame consists of 9 values for
all 20 joints. The feature vector per frame has 180 dimensions,
and per gesture has 1800 dimensions.

(b) Normalized skeletal joint positions and velocities (SKPV): This
feature set contains normalized positional and velocity data
for 9 joints. The feature vector per frame has 126 dimensions,
and per gesture has 1260 dimensions.

(c) Normalized skeletal joint positions, velocities and accelera-
tions (SKPVA): This feature set contains positional, velocity,
and acceleration data for 9 joints. The feature vector per frame
has 189 dimensions, and per gesture has 1890 dimensions.

(d) SK + HOGPCA: This feature set was obtained by concate-
nating the 1260-d feature vector of normalized skeletal joint
positions and velocities (SK) with the 400-d feature vector of
HOG data for 32 × 32 pixel squares around the left and right
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Fig. 10. Some pairs of similar gestures in the NATOPS dataset.

hands whose dimensionality has been reduced by PCA. The
resultant feature vector per gesture example is 1660-d.

For each feature set described above, we trained random forests
with 500 trees on gesture instances from the training and validation
sets, and tested the performance of our classifier on the test dataset.
The division of the data into training, validation and test sets has
been described earlier [29].

Fig. 11. Confusion matrix for pairs of similar gestures in the NATOPS dataset.

The feature set that combines the normalized positional and
velocity information (SKPV), with HOG features of the hands (HOG-
PCA), is correctly classified correctly 88.91% of the time (Table 3),
which is the highest average classification accuracy of all feature sets.

The iterative procedure of training a random forest improves its
capacity to correctly classify and segment gestures for both methods.
This is evident in the increase in Jaccard scores on the training sets
(Figs. 12 and 13 ).

Table 4 shows the Jaccard score of our method compared with the
winning scores of the ChaLearn gesture recognition challenge. The
competition winner used information from skeleton joints, intensity
and depth videos in a deep neural network framework to achieve
a Jaccard score of 0.84 [33] (subsequently improved to 0.87 [22]).
Our classifier achieves a good recognition accuracy of 88.91% on
pre-segmented gestures. One benefit of using a cascaded gesture
spotting and classification framework is that it enables separate
evaluations of the spotting and classification schemes. The frame-
work which performs spotting and classification simultaneously
achieves a Jaccard score of 0.68 whereas the cascaded framework
that first spots a gesture before classifying it achieves a score of 0.72.

Table 2
Performance comparison on pairs of similar gestures in the NATOPS
dataset with other approaches (The HMM, HCRF, and Linked HCRF)
presented by Song et al. [32].

Classifier Average classification
accuracy

HMM 77.6%
HCRF 78.0%
Linked HCRF 87.0%
Random forest (our) 88.1%
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Table 3
Average classification accuracy on all 20 gestures of the ChaLearn
dataset.

Feature set Average classification
accuracy

Feature set a (RAW) 81.4%
Feature set b (SKPV) 88.1%
Feature set c (SKPVA) 83.5%
Feature set d (SK + HOGPCA) 88.9%

6. Conclusion

Our method consists of first creating a uniform fixed-dimensional
feature representation of all gesture samples, and then using all
training samples to train a random forest. On a challenging subset of
the NATOPS dataset, our approach yields results comparable to those
produced by graphical models such as HCRFs. Although a random
forest classifier does not explicitly model the inherent temporal
nature of gestural data as done by graphical models, its performance
in accuracy on this particular dataset exceeds that achieved by
graphical models such as HMMs, and different variants of HCRFs,
which are presented by Song et al. [32]. Additionally our experiments
also show that classification accuracy was improved by combining
3D skeletal joint-based features with appearance-based features,
thus underlying the importance of a well-chosen feature set for a
classification task.

Although a simple approach has yielded good results with this
dataset, there are areas where improvements can be made. As our
results have shown, there are some gestures in both datasets that
are easily confused and hence hinder the ability of the classifier to
achieve maximum accuracy. For example, some gesture pairs (e.g.
(2, 3), (10, 11)) in the NATOPS dataset are very similar in structure
and therefore there are several instances where the classifier mis-
classifies one as the other. For example, gestures 2 and 3 in the
dataset have the same hand movements and only differ in hand-
shape (gesture 2 is performed with a thumbs-up hand-shape, while
gesture 3 is performed with a thumbs-down). Although probability
measures for hand-shapes are part of the feature description for
each gesture, the probability of their selection during tree construc-
tion is low due to the randomized nature of selecting features while
building individual decision trees. A possible fix for this problem is
to modify the process of feature selection during tree-building by
encoding a weighting scheme that emphasizes the selection of more
discriminative features. Another approach would involve classifying
sub-gestural units as done by Cooper and Bowden [34], and then use
some Markov chain structure to classify the hand gesture.

Fig. 12. Plot of number of misclassifications and Jaccard Index score with number of
iterations of training the simultaneous classifier.

Fig. 13. Plot of number of misclassifications and Jaccard Index score with number of
iterations of training the sequential classifier.

We have presented a comparison of random forest frameworks
for a multi-gesture classification problem on a continuous setting.
On the ChaLearn dataset, our classifier yields an average accuracy of
88.91% when tested on a set of segmented gestures. However, the
task of simultaneously detecting and classifying gestures is a more
difficult challenge than classifying accurately segmented gestures.
Doing gesture spotting and classification by employing a cascaded
framework yields better results than doing simultaneous spotting
and classification, suggesting that solving the two problems sequen-
tially is advantageous, especially in datasets where gestures are
separated by background.

The strengths of our two frameworks lie in their simplicity to
train and their capacity to generalize well to variations in user size,
distance to the sensor, and speeds at which the gestures are per-
formed, and their robustness to the effects of sensor noise. One area
of the framework that can be improved is the process of selecting and
creating better feature sets. Many additional features, such as joint-
pair distances used by Yao et al. [35], can be experimented with in
order to improve the accuracy of our framework. Additionally, select-
ing a small group of features over an interval of frames to split a
node in a decision tree, instead of selecting a single feature at a single
frame, might be better suited to the purpose of learning complex
spatio-temporal objects such as gestures. However, computing more
features may hamper the random forest framework’s speed during
test time.

As stated above, there are ambiguities between similar gesture
pairs in both datasets, which the random forest classifier cannot
differentiate well. A potential idea for further exploration is to use
another layer of tree-forest classifiers to identify the features that
can differentiate the ambiguities in order to further refine classifica-
tion results. In general, gesture classification can be performed in a
hierarchical framework, where random forests at the top-most level
will accurately separate a dynamically-defined set of super-classes,
each of which will be subject to further classification by classifiers at
subsequent layers, until all classes are well-separated.

Table 4
Jaccard Index scores on ChaLearn gesture recognition challenge
2014 [29].

Method Jaccard Index score

Deep neural network [22] 0.87
Simultaneous spotting and classification 0.68
Sequential spotting and classification 0.72
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