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Table 1. Encoder E architecture (input size is 128×128×3)

Layer Filter/Stride αin/αout # blocks # filters
conv1 3×3/2 - - 8
IRB1 3×3/2 2/1 5 16
IRB2 3×3/2 4/1 1 24
IRB3 3×3/1 2/1 6 32
IRB4 3×3/2 4/1 1 64
IRB5 3×3/1 2/1 2 96
conv2 1×1/1 - - 128
GAP1 - - - -

fc1 128 - - -
fc2 128 - - -
fc3 128 - - -
fc4 128 - - -
fc5 128 - - -

1. Detailed Encoder Architecture

Here we describe in detail the architecture of the encoder
E module in the UFE framework. As discussed in Section
3 of the main text, E takes as input a 128×128×3 input and
passes it through a convolution block before followed by 5
inverted residual blocks [5] with varying stride length, and
expansion (αin) and contraction (αout) factors. All blocks
use batch normalization and leaky ReLU activation. This
set of residual maps is sampled through a 2D global aver-
age pooling layer, and then fed to (k+1) dense layers for
feature extraction for k labeled attribute subspaces, and ad-
ditional one for unlabeled others. To maintain a [0,1] range
of the feature output, we apply the sigmoid function (σ) as
activation for each dense layer. The decoder architecture is
similar to the StyleGAN2 network shared in [4]1, without
progressive growing.

The detailed layers of E are listed in Tables 1. We rep-
resent convolution blocks, dense layers, inverted residual

1Available here: https://github.com/NVlabs/stylegan2

Figure 1. Disentanglement loss (Ldis) for cross dataset train-
ing: the encoder E is fed D1 and D2 from the two datasets and
generates F D1 and F D2 respectively. A combination pair,
F dis D1 and F dis D2, is produced by mixing different at-
tributes from the two sets, and fed to the decoder D to synthe-
size D1 and D2 respectively. The disentanglement loss is com-
puted as L1(E(D1 ), F dis D1) + L1(E(D2 ), F dis D2), for
all such generated pairs from the two batches.

blocks and global average pooling as ‘conv’, ‘fc’, ‘IRB’,
and ‘GAP’ respectively in the table.

2. Cross Dataset Training: Leveraging the Dis-
entanglement Loss

For cross dataset training with two datasets having dis-
joint labels, we apply the disentanglement loss (Ldis from
the main text) to bridge the representations from the two
sample sets. For the supervised training component, sepa-
rate batches are taken from the two datasets and the UFE
is trained using Lcls, Lcon and Lrec. To connect the two
dataset however we prepare couples of of combination sets
of features from sample pairs coming from the two batches.

For example, the identity, lighting, expression and pose
(age, gender and eyeglasses) features are labeled in Multi-
PIE [2] (FFHQ [3]). However, the missing labels for [age,
gender, eyeglasses] can be added by combining them from
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Figure 2. (a) Expression transfer to FFHQ [3] source from MultiPIE [2] target, and (b) (top – bottom) age, gender and eyeglasses transfer
to MultiPIE from FFHQ. As shown, the UFE generated features can transfer across image pairs that have subjects looking in the opposite
directions. While expression, age and spectacle changes are easily noticeable, we find gender changes to manifest very subtly, e.g. by
removing facial hair, as they are correlated with identity.

a corresponding FFHQ sample. Similarly, the UFE can
learn [identity, pose, expression, lighting] from correspond-
ing MultiPIE features. Additionally, combining with multi-
ple FFHQ samples can generate many possible [age, gender,
eyeglasses] variations for the same MultiPIE identity, thus
providing a catalog of future training set, allowing for an
extensive cross dataset training. The idea is also illustrated
in Figure 1.

3. More Cross Dataset Composites: Analyzing
Limitations

Here, we present more qualitative results from the cross
dataset experiment featuring the MultiPIE [2] and FFHQ [3]
datasets. We transfer expression features from the former
while any one of age, gender and eyeglasses from the lat-
ter. The results can be seen in Figure 2. While expression,
age and eyeglass changes are easy to spot, we find gender
changes to be very subtle, visible as gradual disappearance
of facial hair and eyebrow reshaping. We attribute this to
the correlation between the gender and identity subspaces in
the training data itself, as they are heavily inter-related but
not labeled as a pair in either of the dataset. MultiPIE has
identity labels while FFHQ has gender. Such a mismatch
makes the model for conservative in its representation and

manifests in small pixel changes when decoded.
On analyzing some of the finer annotations within the

In-house dataset samples, we found the features for mus-
tache, beard and gender to be correlated with identity la-
bels. Moreover, these three attributes are well correlated
with each other as well. This is mainly due to the distribu-
tion of these features mainly being skewed to one class (e.g.
mustache present for male) and no positive real sample be-
ing present for the opposite instance. Hence, the UFE never
learns these cases in training, and consequently manages to
shift gender attributes slightly when the identity is fixed.

4. In-house Test Data Distribution

Here, we discuss the non-uniformity in the In-house
dataset presented in the main text. The samples collected for
the different expression classes are heavily skewed towards
2 – 3 buckets, and even vary across the CC and RVM camera
angles. In fact, the Fear class has no samples in the CC test
set. The training set has a similar distribution and presents a
considerable challenge for the UFE to learn meaningful rep-
resentations. Additionally, since the sparse expressions are
generally present for only a few subjects, identity and ex-
pression features become more entangled during training, as
evident from the AFFDEX 2.0 [1] results from the main pa-



Figure 3. Inhouse test split distribution: the dataset is non-uniform in terms of class wise cardinality, making feature learning difficult for
the UFE.

per. Alongside the contrastive objective Lcon in UFE train-
ing, we find the disentanglement loss Ldis to be helpful in
mitigating this issue and allows oversampling on the under
represented samples for synthetic feature creation.
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