LEGAN: Disentangled Manipulation of Directional Lighting and Facial Expressions whilst Leveraging Human Perceptual Judgements

Paper # 21

Sandipan Banerjee, Ajjen Joshi, Prashant Mahajan*, Sneha Bhattacharya*, Survi Kyal, Taniya Mishra*

:) Affectiva

Affectiva Inc., Boston, USA

*Work done while at Affectiva

OVERVIEW

- Existing naturalness metrics either generate a single score for the whole dataset (FID [1]) or compute dissimilarity among image pairs (LPIPS [2]).
- Our quality metric rates the naturalness of individual synthetic face **images** in vacuum, serving as an auto substitute for human judgement.
- We directly plug this metric into **LEGAN**, our framework for disentangled lighting and expression manipulation, as an auxiliary discriminator.
- Using a set of hourglass nets, LEGAN separates the attribute **sub-spaces** & performs the desired translation while preserving identity.

CONTRIBUTIONS

- We build a quality estimation model (Q) to directly evaluate the perceived quality of GAN-generated images, and release the dataset of synthetic images along with their crowd-sourced quality annotations.
- When used in training, **Q improves the perceptual quality** of images synthesized by not only **LEGAN** but other **off-the-shelf GANs** as well.
- **Q** can also be used to **filter face images** synthesized by different models.
- **LEGAN** can be utilized as **data augmenter** to improve model performance on downstream tasks like face verification and expression recognition.

PERCEPTUAL QUALITY ESTIMATION

- Dataset (URL): we collected face images generated using five different GAN & 3D model based synthesis approaches. After pre-processing, we ended up with 37K synth. images.
- Perceptual annotation: each image was scored for naturalness by 3 human raters. We used the **mean** (m) & **standard deviation** (std) from these ratings as the perceptual label.
- Quality estimation model (Q): as a cheap proxy for human annotation, we train a CNN with the images & their (m, std) labels. To capture the subjectiveness in visual perception, we formulated a margin based loss function for training.

DeepFake ProGAN StyleGAN

LEGAN: UTILIZING Q FOR LIGHTING & EXPRESSION MANIPULATION

Architecture: LEGAN is composed of generator (G) and discriminator (D) networks, while Q serves as an auxiliary module for estimating quality of the synthesized images during training. Similar to other image-to-image translation models, LEGAN does not require paired data for training.

(1) **G**: takes an input image with target attributes and generates **disentangled** transformation masks in lighting and expression sub-spaces using a pair of hourglass nets. A third hourglass generates the final output from these masks. (2) **D**: takes the synthetic sample and generates predictions based on its realness and target attribute(s) association (unpaired data formulation). (3) **Q**: is pre-trained on perceptual data. Kept **frozen** during LEGAN training.

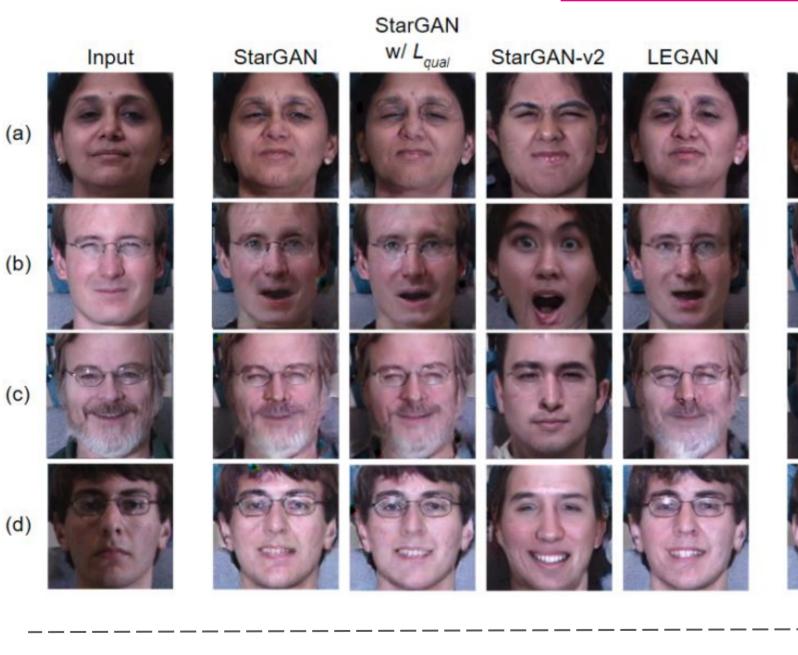
 $G(G(I_a,f_b),f_a)$ Q = Auxiliary Discriminator M = Transformation Mask (+) = Concatenation

- Loss function: The full loss is a weighted sum of following:
 - (1) L_{adv} : **D**'s weights are leveraged to tune **G**'s hallucinations to match distribution of real data and **produce realistic samples** as training progresses. (2) L_{cls} : ensures the **target class association** of a synthetic vector is preserved in the attribute space, using cross entropy over **D**'s softmax prediction.

 - (3) L_{rec}: maintains **structural integrity** by cyclically reconstructing the input image from the translated output, comparing the two in pixel space.
 - (4) Lid: preserves subject identity by minimizing the distance between representations of the input & output images in the LightCNN-29 [3] feature space. (5) L_{qual}: optimizes the perceptual quality of the translated output in the forward phase while preserving the same for the reconstructed input in the cyclic

phase using Q's prediction.

EXPERIMENTAL RESULTS



- LPIPS [103] **Match Score** [44, 22] **Human Preference** ↑ Models FID $[45] \downarrow$ **SSIM** [94] 1 Quality Score 1 StarGAN [25] 38.745 0.126 0.559 0.635 5.200 22.3% StarGAN w/ L_{qual} 34.045 0.123 0.567 0.647 5.391 34.7% 54.842 0.212 0.415 0.202 5.172 3.75% **StarGAN-v2** [26] 29.964 5.853 LEGAN 0.1200.649 0.649 39.3% 12.931 5.921 0.739 Real Images
- **Training data**: We use frontal face images from the MultiPIE dataset.
- Improving perceptual quality: Adding Q to the training framework improves visual quality and removes blob-like artifacts [4] from synthesized images (StarGAN: d).
- Improving off-the-shelf StarGAN: When added to the training framework of StarGAN [5], Q improves its performance on almost all metrics (compare rows 1 & 2).
- Correlation with existing metrics & human judgement: As can be seen in columns (2, 3, 6) & (6, 7) in the table above, our quality metric is well correlated with FID and LPIPS, and naturalness ratings provided by human annotators.
- Improving face verification: When training data (CASIA-WebFace) is augmented with LEGAN's synthetic images, model performance improves on IJB-B and LFW datasets.

Training Data	Real Images [100] (# Identities)	Synthetic Images (# Identities)	IJB-B [96] Performance	LFW [46] Performance
Original	439,999 (10,575)	0	0.954 ± 0.002	0.966 ± 0.002
Augmented	439,999 (10,575)	439,999 (10,575)	$\textbf{0.967} \pm \textbf{0.001}$	$\textbf{0.972} \pm \textbf{0.001}$

Improving emotion recognition: adding synth. images with targeted emotions alleviates class imbalance also improves model performance on the AffectNet dataset.

h	Training Data	Real Images [66]	Synthetic Images	'Neutral'	'Happy'	'Surprise'	'Disgust'
	Original	204,325	0	0.851 ± 0.005	0.955 ± 0.001	0.873 ± 0.004	0.887 ± 0.005
Ì	Augmented	204,325	279,324	0.868 ± 0.005	0.956 ± 0.001	0.890 ± 0.003	0.897 ± 0.001

- [1] M. Heusel, et al. "Gans trained by a two time-scale update rule converge to a local nash equilibrium", in NeurIPS, 2017.
- [2] R. Zhang, et al. "The unreasonable effectiveness of deep features as a perceptual metric", in CVPR, 2018.
- [3] X. Wu, et al. "A light cnn for deep face representation with noisy labels", in IEEE Trans. on Information Forensics and Security (TIFS), 2018.

Ground

Truth

[4] T. Karras, et al. "Analyzing and Improving the Image Quality of StyleGAN", in CVPR, 2020. [5] Y. Choi, et al. "Stargan: Unified generative adversarial networks for multi-domain image-to-image translation", in CVPR, 2018.