
Protocol for Eliciting Driver Frustration in an
In-vehicle Environment

Abstract—A state of frustration can impair a driver’s ability
to make decisions that optimize the safety of the driver as
well as that of those around him or her. Equipping a car
with the capability of detecting signs of driver frustration and
responding with appropriate interventions can be an effective
method to improve driver safety. In this paper, we first describe
the design and implementation of a novel protocol used to elicit
true frustration of varying intensities in participants interacting
with an in-car Human Machine Interface (HMI) while driving
in a simulator. We detail the instrumentation that was used
to capture the participants’ interactions with the HMI. We
provide a computational analysis of signs of frustration displayed
by participants in the facial and vocal modalities and discuss
trends that were observed. Finally, we present baseline machine
learning methods trained on features computed from facial
and vocal modalities to predict the difficulty of the completed
task and whether the participant is multitasking, validating the
assumptions that informed our protocol design.

Index Terms—frustration, in-car sensing, emotion elicitation
protocol, multimodal

I. INTRODUCTION

Interfaces that enable interaction with computers have be-
come more diverse and commonplace in recent years. People
interact with their computing devices and services using in-
creasingly natural modes of communication, such as text, voice
and gestures. As these interfaces become more ubiquitous,
the reliance on these technologies to seamlessly perform tasks
intended for them by the user will grow, along with the expec-
tations regarding the robustness and efficacy of these systems.
Despite the impressive autonomous abilities of current AI
enabled machines, human machine interactions continue to be
frustrating. A successful Human Machine Interface (HMI) of
the future may therefore need to understand and cater to the
unstated emotional state of users, who are intolerant of the
HMI’s failure to respond to their requests or demands.

Frustration induced by users’ interactions with HMIs is es-
pecially a problem in the automotive use-case. Recent statistics
show that every single day, 9 people die and a thousand are
injured due to distracted drivers on the road [1]. People in
the United States already spend an enormous amount of time
in their cars, commuting further and further to get to and
from their jobs. It is estimated that people spend an average
of 17600 minutes per year in a car [2], equivalent to more
than 12 24-hour days. This means that invariably some of
that time, people will be interacting with their in-car HMI
to perform tasks such as getting directions to a destination,
sending messages to friends and family or changing radio
stations. A failure of the in-car HMI to understand the driver
or perform the task intended for it may cause frustration.

Fig. 1. Example images from a video sequence depicting a participant
frustrated with the task of interacting with an in-car HMI. The temporal
evolution of classifier activations for a variety of facial action units are plotted
in the bottom.

Studies have shown that a frustrated driver can be a dan-
gerous driver [3]. Equipping vehicles with in-cabin sensors
that can measure signals in relevant modalities and models
that can process the signals accurately to detect if the driver
is frustrated can enable the deployment of effective real-time
intervention systems to de-escalate the driver from a state of
frustration. For example, Hernandez et al. proposed measures
such as an empathetic GPS voice, calming temperature and
corrective headlights to counter stress and frustration [4].

Over the past decade, supervised deep machine learning
models have enabled significant progress in a variety of tasks
spanning computer vision, computational speech and natural
language processing. These methods have also engendered
significant progress in affective computing but most of the
research has been focused in modeling basic emotions [5]
and expressions [6]. More nuanced emotional states such as
frustration have not had the same attention.

While there exist many datasets of basic emotions — albeit
some very small — datasets of frustration are comparatively
fewer and mostly limited to the education domain [7]. One
of the challenges of developing frustration datasets is that the
manifestations of frustration are subtler than basic emotions
like anger or rage, which makes it difficult to simulate or
act out, while also being time-consuming to collect naturally
because it is highly variant across individuals and thus needs to
be collected from a wider population. Notwithstanding these
challenges, ‘true’ or natural frustration datasets need to be
collected in order to build machine learning models that can
detect frustration in humans.

In this paper, we focus primarily on the description of a data
collection protocol that elicits true frustration of different in-



tensities in participants, thereby ensuring a relatively balanced
distribution of frustration intensities in the dataset. In order to
study observable signs of frustration displayed by drivers while
interacting with an in-car HMI, we designed and implemented
a novel protocol involving participants interacting with the
HMI in a Wizard-of-Oz setting to perform various tasks while
driving in a simulator. The protocol involved capturing the
participant’s interactions with the HMI through an array of
sensors. Figure 1 shows example images of a participant
displaying signs of frustration while participating in the study.

The contributions of this paper are threefold. First, we
propose a novel frustration data collection protocol, which
we implemented to elicit varying intensities of frustration in
105 participants. Second, we provide a detailed analysis of
face and speech data that were captured during the protocol,
illustrating observed trends in facial and vocal displays of frus-
tration. Third, we present baseline machine learning methods
to recognize the intended difficulty of the task and whether
the user is multitasking from the displayed facial and vocal
signals, validating the assumptions that informed our protocol
design.

II. RELATED WORK

Lawson defined frustration as “the occurrence of an obstacle
that prevented the satisfaction of a need” [8]. Frustration
can cause an “increase in arousal” [9], which can cause
aggressive behavior according to the frustration-aggression
hypothesis [10]. In the context of driving, frustration has
been shown to occur when the goal of achieving mobility
is impeded, for example, by red-light signals, slow moving
vehicles, or blocked path by other vehicles or pedestrians [11].
Frustration can hinder cognitive processes essential for driving,
such as judgment, decision making and attention [12]. Shinar
contended that a drivers frustration is enabled by the drivers
environment and is a cause of aggressive driving behavior
[3] such as tailgating, headlight flashing, obscene gestures,
obstructing other vehicles and verbal abuse [13].

In order to study frustration and identify strategies that can
be used to measure it, researchers have experimented with
various methods to elicit frustration. For example, Riseberg
et al. designed software interventions to simulate the mouse
failing or sticking, which hampered the scores achieved by
participants while playing a mouse-based game [9]. Taib et
al. induced frustration by adding constraints such as noise,
speed bumps, narrow road u-turns, tight parking spots while
completing driving tasks [14]. Abdic et al. asked participants
to complete several tasks, such as entering addresses into the
navigation system, while driving around a preset route [15].

A. Manifestations of Frustration

Frustration is manifested in a variety of complex ways. In
the context of driving, it has been shown to be accompanied
by various behaviors, such as, horn honking, purposeful tail-
gating, flashing high beams [16] and overtaking [17]. Malta
et al. found that the intensity of pedal actuation signals can
be a good indicator of frustration [11]. Frustrated drivers

are more likely to yell and swear at other drivers [16].
Gestural indicators of frustration while driving have also been
identified: clenched fist, insulting gestures aimed at others, and
banging hand against the steering wheel [18].

Facial features are also an important signal in predicting
frustration. Graafsgard et al. indicated several facial action
units (AU), anatomically described facial expressions devel-
oped by Ekman and Friesen as part of the Facial Action
Coding System (FACS) [19], to be correlated with frustration
during learning [7]. Ihme et al. found that muscles in the mouth
region (nose wrinkler, chin raiser, lip pucker, lip pressor) are
more frequently activated during frustration [20]. Abdic et
al. found that, surprisingly, many people often smile when
frustrated [15]. Huber et al. showed that pupil dilation can
indicate high levels of frustration [21]. However, identifying
global indicators of frustration can be challenging because it
may not manifest uniformly for all people. Signs of frustration
are displayed differently by culture [22], personality types
[18], [23], gender [3] and age [24], [25].

B. Annotating Frustration Data

The most common method of obtaining frustration labels
for a sequence is through self-reports completed by partic-
ipants. Several standard questionnaires have been developed
for drivers to fill in studies of frustration, anxiety or stress,
such as, the Driving Behavior Inventory - General (DBI-Gen)
and the State Driving Behavior Checklist [16]. Gunatillake
et al. developed a Traffic Frustration Index (TFI) in order to
quantify the events which contribute to driver frustration [26].
Abdic et al. asked participants to complete a self-report which
included a question measuring frustration in a scale of 1 to
10 [15]. Grafsgaard et al. had participants self-report pre-test
and post-test measures of frustration while participating in an
experiment that involved interacting with a computer-mediated
human tutor [7].

Another method used for annotating frustration is to pre-
define “frustrating” and “non-frustrating” tasks. For example,
Ihme et al. designed driving tasks in a simulator where the
frustrated condition contained time constraints and unfavorable
traffic conditions that hindered task completion [20].

C. Modeling Frustration

Researchers have attempted to model, measure and predict
frustration using signals from various modalities. Bosch et
al. trained simple models to classify learning-centered affect
states (frustration, boredom, confusion, delight and engage-
ment) on facial action unit features extracted from a dataset
of students interacting with an intelligent tutor [27]. Ihme et al.
built classifiers trained on facial action unit features as well as
cortical activations with functional near-infrared spectroscopy
(fNIRS) to classify the frustration levels of participants driving
in a simulator [20]. McCuaig et al. trained a neural network
to detect frustration based on features collected from an eye-
tracker [28]. Ang et al. investigated the use of prosody-based
and semantics-based features in building models to detect
frustration and annoyance [29]. Taib et al. trained a binary



Driving Simulator

RGB/nIR cameras

High Quality Microphone

Integration Platform

Physiological Sensors 
(ECG and GSR)

Fig. 2. Our data collection lab illustrating the setup of various sensors and
instruments.

classifier to determine high frustration in a simulated driving
task based on features extracted from pressure sensors attached
to the driving seat [14]. Fernandez and Picard showed that
electrodermal response (GSR) was indicative of human frustra-
tion in interacting with systems [30]. Belle et al. distinguished
frustrated students from calm students using ECG data [31].

Kapoor et al. trained classifiers to detect students frus-
tration while interacting with intelligent tutoring systems,
training models on features extracted from the participants
face, posture sensors in the chair, skin conductance as well
as pressure sensors attached to the mouse [32]. Malta et
al. constructed a Bayesian network that modeled frustration
using traffic variables (e.g. traffic density, red lights), ve-
hicle measurements (pedal actuation), behavioral measures
(facial features, speech recognition errors) and physiological
measures (electrodermal activity) [11]. Abdic et al. trained
SVMs to distinguish “frustrated” sequences from “satisfied”
sequences based on facial and audio features computed on
a dataset of participants interacting with a voice interface
while driving [15]. Grafsgaard et al. trained models to detect
learning-centered affective states of students interacting with
an intelligent tutor on multimodal features extracted from
textual dialogue with the tutor, nonverbal behavior and task
action input streams [33].

III. DATA COLLECTION PROTOCOL

The goal of the proposed data collection protocol was to
elicit in a random group of human participants a frustrated
emotional state to the point where they displayed perceptible
facial, vocal and physiological markers of frustration. Specif-
ically, we wanted to collect audio, video and physiological
recordings corresponding to the participants frustration while
interacting with an in-car HMI under two conditions:

• Performing a driving task and interacting with the HMI
• Performing no other task while interacting with the HMI

The driving task was performed in an in-lab simulator.

A. Participants

105 participants (55 female, 47 male, and 3 who did not
specify gender) participated in this collection. The participants
were health screened for use of any Beta-Blockers, flu or cold-
like symptoms or recent life events. Participants were recruited
to participate in a “conversational agent interaction study” with
no reference to frustration, so as to prevent any precondi-
tioning or expectation that the experience may be frustrating.
Participants were simply told the purpose of the study was to
understand how humans interact with conversational agents in
order to accomplish different tasks.

B. Methodology

We aimed to elicit true frustration at varying intensities in
participants by having them interact with the Amazon Alexa
voice agent [34] to accomplish tasks of varying difficulty.
Participants were asked to perform a variety of interaction
tasks in a timed scenario, which were designed to mimic real
interactive conversations that people might have with an in-
car HMI. However, participants were unaware of the fact that
their interactions were performed in a Wizard-of-Oz setting,
where the questions and responses from Alexa were either
pre-recorded and played by a researcher running the study, or
produced via imitation using Alexa’s “Simon says” feature.
The responses (pre-recorded or imitated) were created so as
to deliberately impede the completion of the instructed task.

Each participant performed two sessions, each consisting
of the same 6 voice interaction tasks. The sessions were a
“multitasking” session, where the participant performed the 6
voice interaction tasks while driving in a driving simulator;
and a “Unitasking”session, where the participant did not need
to drive while performing the same voice interaction tasks.

Participants were allowed between 30 and 150 seconds to
perform each task, depending on task difficulty. The time
participants were given to complete a task was the same
across both sessions. To control for any learning effects, we
randomized the order of the sessions, so that half of the
population performed the tasks first without driving, and then
in conjunction with driving, and the remaining half performed
the tasks in reverse order. Each participant was paid $120 for
participating in the study. However, to motivate the participants
to complete each task, and therefore increase the likelihood of
them getting frustrated when unable to do so, the participants
were told that they would get paid a minimum of $80 and up
to $40 more depending on how many tasks they completed
successfully. Each participant took approximately one hour to
complete both sessions.

C. Tasks

The tasks that participants were asked to perform in each
of their sessions are as follows:

• Add and remove items off of a shopping list
• Ask the HMI to tell a joke
• Ask the HMI to set timers
• Ask the HMI to play various radio stations



Fig. 3. Histogram of self-reported frustration intensities.

• Ask the HMI to play various media (e.g. songs, e-books,
news etc.)

• Compose and send text messages to another person
These tasks were chosen as examples of interactions that

people may have with a real in-car HMI agent. In order to
impede the completion of the tasks and thus induce frustra-
tion, the responses were either pre-recorded or manipulated
using Alexas “Simon Says” feature. Strategies for impeding
task completion included deliberately misunderstanding users
commands, ignoring or denying users’ commands, interrupting
user in the middle of making a command as well as setting
off annoying and loud countdown clocks and buzzers.

D. Instrumentation and Sensors

The driving simulator consisted of a bench with a driver
seat, steering wheel, gas and brake pedals, accompanied by
driving simulator software (Figure 2). The lab was equipped
with the following suite of sensors:

• Multi-cameras and audio setup (4 pairs of NIR and
RGB cameras, 2 microphones): A multi-camera audio-
video setup was used to capture multiple views of the
participant as well capture as his or her audio stream.

• Baby monitor: A baby monitor was used by the researcher
conducting the study to observe the participant so that
the pre-recorded Alexa responses could be played at
appropriate times.

• ECG: Participants were asked to put 4 ECG sensors on
their body that enabled measurement of heart rate.

• GSR: Participants were asked to wear a skin conductance
sensor.

All signals were synchronized using audio cues.

IV. EXPLORATORY DATA ANALYSIS

For preliminary data analysis, we selected a subset of
participants, based on the quality of the recorded high-quality
audio signal. This subset consisted of 74 participants, each
of whom completed 12 tasks. For these participants, we
analyzed frustration intensities as reported by participants
themselves for each task, and the facial expressions and vocal
characteristics they displayed when engaged in performing the
tasks in the collection protocol.

A. Distribution of Frustration Intensities

One of the primary purposes of designing a frustration
elicitation protocol was to engineer interactions that could
induce varying states of frustration in participants. In Figure
3, we plot the counts of the various intensities of frustration as
reported by the participants for every task. As can be observed,
the distribution of self-reported intensities is fairly uniform,
with each intensity of frustration being reported more than
150 times.

B. Multitasking Induces Observable Signs of Frustration

We analyzed the average activations of facial action units
and emotions for all tasks using Affectiva’s SDK [35]. Par-
ticipants displayed more brow furrows, chin raises, inner
brow raises, lid tightens and lip stretches for tasks completed
while driving compared to tasks where they focused solely on
interacting with the HMI. Interestingly, participants displayed
the reverse trend for brow raise (Figure 4 a). One hypothesis
explaining this observation is that brow raises are often inhib-
ited by brow furrows, which occur when a person is frowning.

We also computed acoustic features for segments of each
task where the participant was speaking. Prior to analysis, the
audio was denoised using logmmse [36]. Spoken segments
were identified manually using human annotators. For each
spoken segment, PyAudioAnalysis [37] was used to extract the
acoustic features, including energy features, spectral features,
mel-frequency cepstral features and chroma features; chroma
represents the distribution of an audio signals energy across
a predefined set of pitch classes. We also computed the total
amount of speech produced compared to the overall length
of the task. A subset of acoustic features that showed high
variance across the tasks is shown in Figure 4 c. From this, we
observe that for matched tasks participants spoke less when
they were driving. The other features had an approximately
monotonic trend (increasing or decreasing) in relation to
task difficulty, and an observable difference when comparing
speech produced for tasks completed while driving to speech
produced for the same tasks where the participants were not.

We also computed the average classifier activations for
pre-trained vision and speech anger models in the Affectiva
SDK across all tasks. This also illustrates a similar trend:
averaged across all frames, across all tasks for both visual
and audio signals, pre-trained anger models are activated more
for tasks completed in conjunction with driving compared to
tasks where the participants focus solely on interacting with
the in-car HMI (Figure 4 b and d).

Another interesting observation from the anger plots are
the relative degree of estimated anger relative to the task of
free driving (where participants are driving in the simulator
without having to perform any task). For the task designed and
self-reported to be the most frustrating (Send message) while
driving, the vision and speech anger models were activated,
on average, 1.2 and 3.2 times more respectively compared
to the task of free driving. These observations quantify the
assumption that multi-tasking while driving can be frustrating
and hence distracting.



T0 - Free driving; T1 - Shopping list; T2 - Something funny; T3 - Timer; T4 - Radio; T5 - Play media; T6 - Send message

Performing tasks while driving Performing tasks without drivingFree Driving

Facial Feature Analysis

Speech Feature Analysis

a) b)

c) d)

Fig. 4. a) For each task, we plotted the the average activations of facial action unit classification models. b) For each task, we plotted the average activations
of canonical anger and joy classification models trained on facial displays of anger and joy respectively. c) For each task, we plotted the mean values of
various speech features. d) For each task, we plotted the average activations of anger and laughter classification models trained on vocal displays of anger
and laughter respectively. Images displaying Facial Action Units were obtained from https://imotions.com/blog/facial-action-coding-system/

C. Co-occurrence of Joy and Laughter

We also observed that participants have interesting, non-
intuitive manifestations when responding to a state of frus-
tration. For example, participants smiled, laughed or showed
facial expressions of joy when frustrated (Figs. 4 b and d). This
can be seen in the classifier activations of a face-based “Joy”
classifier as well as those of a voice-based “Laugher” classifier.
On average, activations for these positive valence classifiers
scored higher for all tasks when participants were multitasking
compared to when they were not. This is consistent with prior
art ( [15], [38]) where researchers found that people may
display what are otherwise considered signs of positive affect
despite being in a state of frustration.

D. Subjective Comments and Self-reports

Participants also wrote their opinions in a final survey after
completing both sessions. Participant 39 stated, “I found this
confusing at times and not having driven a car in years stressful
especially when attempting to multitask.” Participant 24 stated,
“Me and Alexa are in a fight. I think she knows I prefer Google
assistant.” Participant 14 stated “Alexa doesnt acknowledge
that she hears me. Its polite to respond when someone says
your name.” These opinions are indicative of the frustration
induced when the driver had to perform challenging voice
interactions while driving.

The average reported frustration, difficulty and stress in-
tensities (on a scale of 1-4) for each task is shown in
Figure 5 a. We observed that for all tasks, the mean of
the self-reported frustration, difficulty and stress intensities
for completing that task while also driving is higher, than
for completing the corresponding task while not driving. This
suggests that difficult and unexpected interactions with an in-
car HMI induces more frustration in people while they are in
the act of driving, compared to when they focus their attention
solely on communicating with the agent without having to
attend to the task of safely driving.

V. PREDICTING TASK DIFFICULTY AND MULTITASKING

The assumptions behind our protocol design are these:
increasing task difficulty can cause perceptible increase in
displays of frustration; and the higher cognitive load placed on
the participant while multitasking can trigger in participants a
heightened sense of frustration. To evaluate the assumptions
explicitly, we trained preliminary speech and vision models
to predict: a) the task difficulty level, and b) the multitasking
label, which represents whether the participant was driving
while performing the interaction or was focused solely on the
interaction. We binarized all labels: the tasks “Play radio”,
“Play media” and “Send messages” were assigned the “dif-
ficult” label as they were designed to be more difficult than
the rest. Multitasking binary labels were assigned based on
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Fig. 5. a) For each task, we plot the average self-reported frustration, difficulty and stress level (on a scale 1-4). b) For each task, we plot the average head
pose angle. c) We plot the classification performance of models trained to predict task difficulty and multitasking.

whether the participant was driving while interacting with the
HMI.

In order to train our baseline vision models, we used
Affectiva’s SDK to first extract classifier activations for a set
of facial action units (Brow Furrow, Brow Raise, Eye Closure,
Mouth Open, Nose Wrinkle, Upper Lip Raise, Yawn, Cheek
Raise, Chin Raise, Inner Brow Raise, Jaw Drop, Lid Tighten,
Lip Corner Depressor, Lip Press, Lip Pucker, Lip Stretch,
Smile), and facial emotions (Anger, Joy, Surprise). We did not
use head pose (Pitch, Roll, Yawn) to train our models because
we observed that people mostly looked ahead in sessions
where they are driving but exhibited higher variance in head
pose in sessions where they are not driving, as illustrated in
Figure 5 b. Each task was represented by an input vector of 20
facial features over a number of frames. In order to compute
an aggregate feature representation, we computed first order
statistical moments (mean, standard deviation, min and max)
for each aforementioned feature, resulting in a 80-dimension
feature vector.

To train our baseline speech models, we extracted acoustic
features using the PyAudioAnalysis library, including energy
features, spectral and ceptstral features and chroma features
from audio samples corresponding to segments where the
participant was speaking while performing the task. For each
task, we computed the same set of statistics of 35 different
features in addition to the speech-to-task ratio resulting in a
141-dimensional feature vector.

We trained and tested our models using 4-fold subject-
independent splits of the data. We trained a random forest
model with a 100 trees, each to a depth of 10. The results
shown in Figure 5 c indicate that speech features were more
predictive of both difficulty level (Mean accuracy of 0.76 for
speech, 0.59 for vision) and multitasking (Mean accuracy of
0.78 for speech, 0.58 for vision). The ability to distinguish task
difficulty and multitasking based on simple classifiers trained
on facial and vocal features validates the protocol design,
which aimed to elicit frustration display perceptible in face
and voice.

VI. CONCLUSIONS AND FUTURE WORK

Frustration is a commonly experienced emotional state that
impairs a person’s ability to efficiently perform a task. As

Human-Machine Interfaces (e.g. in cars) become increasingly
ubiquitous, it is important for these interfaces to detect and
react to the users’ state of frustration. Equipping a car with
the ability to detect emotional states such as frustration and
provide appropriate interventions can be an important measure
towards increasing driver and vehicle safety.

In this paper, we have proposed a novel frustration elic-
itation protocol that we designed and implemented to elicit
varying intensities of true frustration in a realistic driving
scenario. In this protocol, participants interacted with an HMI
to perform tasks of varying difficulty, while driving in a
simulator. The HMI interactions were manipulated by a human
in the background to deliberately impede task completion,
and thus induce subject frustration. During administration of
this protocol, all participant interactions with the HMI were
captured through an array of audio, video and physiological
sensors. We provided a detailed exploratory analysis of the
audio and video data captured from 74 study participants,
illustrating several observable signs of frustration in facial
and vocal display. Finally, we presented baseline machine
learning models to recognize task difficulty labels as well
as the presence of multitasking from the underlying audio
and video signals, to validate assumptions that informed our
protocol design.

There are several avenues for future work. First, we plan to
use human annotators to find correlations between participant
self-reports of frustration and human observations of frustra-
tion in face and voice. We also plan to obtain dense temporal
frustration labels, which will enable us to train frustration
detection models, not at the task-level but at the much-denser
elicitation level. Moreover, more labeled data will allow us
to experiment with more sophisticated but data hungry deep
learning models.

Another avenue of exploration is to leverage the multimodal
nature of frustration manifestation. We aim to also use signals
extracted from the physiological sensors (which we didn’t use
for this study), in addition to video and audio data to build
richer models of representation and classification. A further
improvement would be to personalize models to individual
nuances and idiosyncrasies regarding how signs of frustration
are displayed.
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